Project description:Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX-M-1 encoding IncI1 resistance plasmid in Escherichia coli MG1655 in the presence and absence of therapeutically relevant concentrations of cefotaxime (CTX). Analysis of the proteome by iTRAQ labeling and liquid chromatography tandem mass spectrometry revealed that Tra proteins were significantly up regulated in the presence of CTX. The up-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS39 response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes. The frequency of plasmid conjugation, measured in an antibiotic free environment, increased significantly when the donor was pre-grown in broth containing CTX compared to growth without this drug, regardless of whether blaCTX-M-1 was located on the plasmid or in trans on the chromosome. The results shows that antibiotic treatment can affect expression of a plasmid conjugation machinery and subsequent DNA transfer.
Project description:To explore the interspecies electron transfer and substrate co-metabolism mechanism between denitrifiers and electroactive microorganisms
Project description:The type VI secretion system (T6SS) is a highly sophisticated nanomachine widely used by bacteria to achieve competitive advantage and to potentiate horizontal gene transfer. Plasmid conjugation plays crucial roles in bacterial evolution by driving adaptation to environmental stimuli and pathogenicity. The lethal effect mediated by T6SS is detrimental to horizontal gene transfer by conjugation, while bacteria have evolved T6SS repression mechanisms regulated by plasmid to accomplish conjugative transfer. Two TetR family regulators encoded by large conjugative plasmid (LCP) in Acinetobacter baumannii have been proved similar in T6SS restriction, which seems redundant in function. Here, the global regulation roles and multiple DNA binding sites of two plasmid-sourced TetRs were identified. The two TetRs showed distinct preferences in similar roles of T6SS inhibition and binding with DNA probes. Crystal structures of TetRs were solved for illuminating the regulatory mechanism and possible reasons for difference in functions. In addition, plasmid-sourced TetRs also significantly downregulated biofilm formation and bacterial colonization, as well as influenced bacterial virulence in cultured cells and murine pneumonia infection models. Taken together, this work comprehensively elucidates the roles and regulatory mechanisms of TetRs and clarifies their similarity and difference in function, providing insights into plasmid encoded chromosome regulation pathways.