Project description:Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX-M-1 encoding IncI1 resistance plasmid in Escherichia coli MG1655 in the presence and absence of therapeutically relevant concentrations of cefotaxime (CTX). Analysis of the proteome by iTRAQ labeling and liquid chromatography tandem mass spectrometry revealed that Tra proteins were significantly up regulated in the presence of CTX. The up-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS39 response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes. The frequency of plasmid conjugation, measured in an antibiotic free environment, increased significantly when the donor was pre-grown in broth containing CTX compared to growth without this drug, regardless of whether blaCTX-M-1 was located on the plasmid or in trans on the chromosome. The results shows that antibiotic treatment can affect expression of a plasmid conjugation machinery and subsequent DNA transfer.
Project description:To explore the interspecies electron transfer and substrate co-metabolism mechanism between denitrifiers and electroactive microorganisms
Project description:Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution. Transfer of conjugative plasmids is a complex process that needs to be synchronized with the physiological state of the bacterial host. While several host transcription factors are known to control the plasmid-borne transfer control genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. Here, we describe a post-transcriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two different seed pairing domains to recognize and activate the mRNAs of both the sigma-factor S and RicI, a cytoplasmic membrane protein. The latter is a hitherto unknown conjugation inhibitor whose transcription requires S. Together, RprA and S constitute a feed-forward loop with AND-gate logic which tightly controls RicI synthesis for selective suppression of plasmid conjugation under membrane stress. This study reports the first sRNA-controlled feed-forward loop based on double target activation and an unexpected function for a core-genome encoded small RNA in controlling extrachromosomal DNA transfer.