Project description:Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS) with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused my methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. While toxins have never been clearly indicated in CNS infections, our study shows that an important type of infection caused by the predominant CNS species, S. epidermidis, is mediated to a large extent by a toxin. Of note, these findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches. We used microarrays to detail the global gene expression between S. epidermidis strain Rp62A and S. epidermidis strain Rp62A isogenic Δpsm-mec deletion mutants
Project description:Bacterial sepsis is associated with high morbidity and mortality in preterm infants. However, diagnosis of sepsis and identification of the causative agent remains challenging. Our aim was to determine genome-wide expression profiles of very low birth weight (VLBW) infants with and without bacterial sepsis and assess differences.
Project description:Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that factors on chromosomes (chr) 8, 11, and 18 are responsible for susceptibility to S. aureus sepsis in A/J mice. F1 mice from C57BL/6J X CSS8 cross (C8A) and C57BL/6J X CSS18 (C18A) were also susceptible to S. aureus (median survival < 48 h), whereas F1 mice from C57BL/6J X CSS11 cross (C11A) were resistant (median survival > 120 h) to S. aureus. Bacterial loads in the kidney were consistent with F1 median survivals, with higher bacterial counts in susceptible mice. No sexlinked associations with susceptibility were noted in F1 intercrosses. Using whole genome transcription profiling, we identified a total of 192 genes on chromosomes 8, 11, and 18 which are differentially expressed between A/J and C57BL/6J in the setting of S. aureus infection. Of these, 28 genes had Gene Ontology annotations indicating a potential immune response function. These 28 genes are associated with susceptibility to S. aureus in A/J mice, and are potential determinants of susceptibility to S. aureus infection in humans.
Project description:Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that factors on chromosomes (chr) 8, 11, and 18 are responsible for susceptibility to S. aureus sepsis in A/J mice. F1 mice from C57BL/6J X CSS8 cross (C8A) and C57BL/6J X CSS18 (C18A) were also susceptible to S. aureus (median survival < 48 h), whereas F1 mice from C57BL/6J X CSS11 cross (C11A) were resistant (median survival > 120 h) to S. aureus. Bacterial loads in the kidney were consistent with F1 median survivals, with higher bacterial counts in susceptible mice. No sexlinked associations with susceptibility were noted in F1 intercrosses. Using whole genome transcription profiling, we identified a total of 192 genes on chromosomes 8, 11, and 18 which are differentially expressed between A/J and C57BL/6J in the setting of S. aureus infection. Of these, 28 genes had Gene Ontology annotations indicating a potential immune response function. These 28 genes are associated with susceptibility to S. aureus in A/J mice, and are potential determinants of susceptibility to S. aureus infection in humans. To identify genes for which differential expression between A/J and C57BL/6J mice could contribute to host susceptibility to S. aureus infection, we compared the gene expression profiles between uninfected A/J and C57BL/6J mice and between infected A/J and C57BL/6J mice at 2, 4, 6, and 12 hours after infection.
Project description:Staphylococcus aureus is an important human pathogen causing skin infection and many serious diseases such as pneumonia, sepsis, and toxic shock syndrome. In the bacterium, the membrane-bound protease FtsH plays important roles in the bacterial resistance to various stresses. This study was initiated to explain the strain-specific aggregation of the ftsH-deletion mutant of the Newman strain. To understand the molecular basis of the phenotype, we identified FtsH substrate proteins by comparing the protein contents of two different strains, Newman and USA300, and found that, in the strain Newman, a single nucleotide change in the sensor histidine kinase saeS gene placed the SaeRS two-component system under the control of FtsH, leading to the strain-specific cell-aggregation phenotype. Not only does our study provide a new methodology for protease-substrate determination but it also demonstrates that even a single nucleotide polymorphism can rewire bacterial regulatory network, resulting in a strain-specific phenotype. Our study shows the pitfall of making sweeping conclusion based on experimental results from a single bacterial strain.
Project description:Blood samples (0.5 ml) of 8 adults with blood culture-confirmed bacterial sepsis and 3 healthy adults were collected. A previously optimized host-bacterial RNA extraction protocol was used to isolate leukocyte and bacterial RNA. Purified RNA was depleted or rRNA and underwent deep sequencing using a 150 bp paired-end sequencing run on a NovaSeq 6000 (Illumina). Host and bacterial sequencing reads were aligned in silico and bioinformatic analyses were used to explore host and bacterial transcriptional responses during sepsis.
Project description:Escherichia coli and Staphylococcus are among the most common causes of bacterial sepsis, a deadly syndrome characterized by uncontrolled activation of coagulation and complement enzymatic cascades an exaggerated immune response. We performed in vivo experimental sepsis in baboons to characterize the host response to bacterial infection in blood cells. We demonstrate that bacterial infection leads to early induction of proinflammatory genes followed by a delayed activation of anti-inflammatory pathways. In addition, we observe changes in genes and pathways associated coagulation and complement as well as with leukocyte adhesion, migration and cell death. Our study provides important insights into the temporal kinetics of gene expression in leukocytes during bacterial sepsis.
Project description:Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is secreted by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth phase-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane and bacterial death notably contribute to ATP release. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analysed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain BPH2760.