Project description:Mangroves occur along the coastlines throughout the tropics and sub-tropics, supporting a wide variety of resources and services. In order to understand the responses of future climate change on this ecosystem, we need to know how mangrove species have responded to climate changes in the recent past. This study aims at exploring the climatic influences on the radial growth of Heritiera fomes from a local to global scale. A total of 40 stem discs were collected at breast height position from two different zones with contrasting salinity in the Sundarbans, Bangladesh. All specimens showed distinct tree rings and most of the trees (70%) could be visually and statistically crossdated. Successful crossdating enabled the development of two zone-specific chronologies. The mean radial increment was significantly higher at low salinity (eastern) zone compared to higher salinity (western) zone. The two zone-specific chronologies synchronized significantly, allowing for the construction of a regional chronology. The annual and monsoon precipitation mainly influence the tree growth of H. fomes. The growth response to local precipitation is similar in both zones except June and November in the western zone, while the significant influence is lacking. The large-scale climatic drivers such as sea surface temperature (SST) of equatorial Pacific and Indian Ocean as well as the El Niño-Southern Oscillation (ENSO) revealed no teleconnection with tree growth. The tree rings of this species are thus an indicator for monsoon precipitation variations in Bangladesh. The wider distribution of this species from the South to South East Asian coast presents an outstanding opportunity for developing a large-scale tree-ring network of mangroves.
Project description:In folklore, Heritiera fomes (H. fomes) has been extensively used in treatment of various ailments such as diabetes, cardiac and hepatic disorders. The present study aimed to elucidate the antidiabetic actions of hot water extract of H. fomes (HWHF), including effects on insulin release from BRIN BD11 cells and isolated mouse islets as well as glucose homeostasis in high-fat-fed rats. Molecular mechanisms underlying anti-diabetic activity along with isolation of active compounds were also evaluated. Non-toxic concentrations of HWHF stimulated concentration-dependent insulin release from isolated mouse islets and clonal pancreatic β-cells. The stimulatory effect was potentiated by glucose and isobutyl methylxanthine (IBMX), persisted in presence of tolbutamide or a depolarizing concentration of KCl but was attenuated by established inhibitors of insulin release such as diazoxide, verapamil, and Ca2+ chelation. HWHF caused depolarization of the β-cell membrane and increased intracellular Ca2+. The extract also enhanced glucose uptake and insulin action in 3T3-L1 differentiated adipocytes cells and significantly inhibited in a dose-dependent manner starch digestion, protein glycation, DPP-IV enzyme activity, and glucose diffusion in vitro. Oral administration of HWHF (250 mg/5ml/kg b.w.) to high-fat fed rats significantly improved glucose tolerance and plasma insulin responses and it inhibited plasma DPP-IV activity. HWHF also decreased in vivo glucose absorption and intestinal disaccharidase activity while increasing gastrointestinal motility and unabsorbed sucrose transit. Compounds were isolated from HWHF with similar molecular weights to quercitrin (C21 H20 O11) ranging from 447.9 to 449.9 Da which stimulated the insulin release in vitro and improved both glucose tolerance and plasma insulin responses in mice. In conclusion, H. fomes and its water-soluble phytochemicals such as quercitrin may exert antidiabetic actions mediated through a variety of mechanisms which might be useful as dietary adjunct in the management of type 2 diabetes.
Project description:Heritiera fomes Buch.-Ham. (1800) is a species of mangrove in the family Malvaceae, widely distributed in the Indo-Pacific and listed as 'endangered' (EN) on the International Union for Conservation of Nature's (IUCN) red list. We reported the complete chloroplast genome sequence of H. fomes. The genome was 168,521 bp in length and included two inverted repeats (IRs) of 34,496 bp, separated by a large single-copy (LSC) region of 88,604 bp and a small single-copy (SSC) region of 10,925 bp, respectively. The genome contained 87 protein-coding genes (PCGs), 8 rRNA genes, and 37 tRNA genes. The maximum-likelihood (ML) phylogenetic tree suggested that H. fomes is closely related to Heritiera angustata and Heritiera parvifolia with relatively high support bootstrap values of 86% and 100% with other species (Heritiera littoralis and Heritiera javanica), suggesting a relatively close genetic relationship between the five Heritiera plants. The chloroplast genome sequence provided a useful resource for conservation genetics studies of H. fomes and for phylogenetic studies of Heritiera.
Project description:Medicinal plants have been crucial in treating various chronic ailments since ancient times. The objective of this study was to evaluate in vitro pharmacological properties of petroleum ether, chloroform, and ethyl acetate soluble fractions of ethanolic extract (leaf, bark, and root) of Heritiera fomes Buch. Ham., including the phytochemical screening of the plant. Thrombolytic and antiarthritic properties were assessed through the clot lysis and protein denaturation experimental method, correspondingly. Anthelmintic and insecticidal activities were studied against Pheretima posthuma and Tribolium castaneum, respectively. The phytochemical analysis exhibited numerous active phytochemicals in different solvent fractions. In thrombolytic investigation, among all crude extracts, ethanolic leaf extract showed the highest 33.12 ± 7.52% clot lysis as compared to standard streptokinase (67.77 ± 9.78%). In antiarthritic assay, all the tested samples exhibited noteworthy protein denaturation in dose-dependent manner (100–500 μg/mL), whereas the utmost percentage inhibition was noticed for chloroform extract of roots (63.28 ± 5.96% at 500 μg/mL). All crude extracts exhibited a significant anthelmintic activity in different concentrations (25–75 mg/mL) and revealed paralysis and death of earthworms in comparison with albendazole; ethanolic extract of the bark was found to be more potent at the highest dose. For the insecticidal test, ethanolic extract of the leaf showed the utmost mortality rate (73%). The outcomes of the investigation confirmed the potential thrombolytic, antiarthritic, anthelmintic, and insecticidal activities of the different extracts of H. fomes, and hence, advanced studies on the isolation and identification of active phytocompounds are highly needed for new drug development.