Project description:Endozoicomonas are prevalent, abundant bacterial associates of marine animal hosts, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify putative interactions within the coral holobiont, we characterized a novel Endozoicomonas isolate and assessed its transcriptomic and proteomic responses to tissue extracts of its native host, the Red Sea coral Acropora humilis, at control and elevated temperatures. We show that host cues stimulated differential expression of genes assumed to be involved in the modulation of the host immune response by Endozoicomonas, such as flagellar assembly genes, ankyrins, ephrins, and serpins. Proteome analysis revealed the upregulation of vitamin B1 and B6 biosynthetic as well as glycolytic processes by Endozoicomonas in response to host cues. We further demonstrate that the inoculation of A. humilis with its native Endozoicomonas strain resulted in enhanced holobiont health metrics, such as host tissue protein content and algal symbiont photosynthetic efficiency. Behavioral, physiological, and metabolic changes in Endozoicomonas may be key to the onset and function of mutualistic interactions within the coral holobiont, and our results suggest that the priming of Endozoicomonas to a symbiotic lifestyle may involve modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas presumably plays an important role in holobiont nutrient cycling and may therefore be implicated in its health, acclimatization, and ecological adaptation.
Project description:Transcriptional profiling of populations in the clam Ruditapes decussatus determined differentiation in gene-expression along parallel temperature gradients and between races of the Atlantic Ocean and West Mediterranean sea.
Project description:The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest world production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum–P. olseni interaction, we analyzed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid to understand the response and interaction between R. philippinarum–P. olseni and will contribute for developing effective control strategies for this threatening parasitosis.