Project description:Quantitative proteomic analysis of Paracoccus denitrificans PD1222 wild type and NtrY defective mutant in denitrifying conditions (anaerobiosis, nitrate as nitrogen source)
2022-10-13 | PXD033855 | Pride
Project description:Simultaneous removal of nitrogen and phosphorus by a novel denitrifying phosphorus-accumulating bacterium, Pseudomonas oleovorans DN27
| PRJNA1010484 | ENA
Project description:Biological abundance of denitrifying nitrogen and phosphorus removal reactor
| PRJNA971607 | ENA
Project description:Biological abundance of denitrifying nitrogen and phosphorus removal reactor
| PRJNA971335 | ENA
Project description:Study on nitrogen and phosphorus removal efficiency and mechanism of heterotrophic nitrifying aerobic denitrifying bacteria
| PRJNA1136678 | ENA
Project description:Identification of denitrifying phosphate accumulating organisms
Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths.
Project description:Nitrogen (N) and phosphorus (P) are pivotal element for proper plant growth and development. We performed microarray analysis of rice shoot and root after nitrogen deficiency (-N) treatment under phosphorus deficiency (-P) condition to obtain a global view of gene regulations associated with plant response to -N under -P condition.
Project description:This study explores the use of short settling times as a strategy to enhance microbial selection and prevent bulking induced by nutrient shortage in an aerobic dynamic feeding (ADF) process using mixed microbial cultures (MMCs) for polyhydroxyalkanoate (PHA) production from fermentation digestate. A 5.0-L aerobic reactor was operated under three conditions: Long Settling (LS, 30 minutes), Short Settling (SS, 10 minutes), and Short Settling under Nutrient Shortage (SS-NS, 10 minutes with reduced nutrient load). Short settling significantly improved biomass settleability, reducing the Sludge Volume Index (SVI) from 126 to 25 mL g⁻¹, and promoted the formation of dense flocs enriched in PHA-accumulating bacteria, as confirmed by transmission electron microscopy. Process kinetics revealed enhanced substrate uptake rates and improved storage yields under SS conditions, despite an elevated C/P ratio. Notably, nutrient shortage conditions were inadvertently reached by the proliferation of Polytoma mirum in the feeding tank. Although Polytoma mirum did not affect VFA composition, its presence significantly reduced nitrogen and phosphorus concentrations. These nutrient shortage conditions were maintained for at least 30 days until the system began to exhibit stress, as demonstrated by an increased SVI (178.6 mL g⁻¹). Microbial community analyses indicated marked shifts: the eukaryotic assemblage transitioned from sessile to motile ciliates under SS, while bacterial diversity within the PHA‐accumulating fraction remained high, with key taxa such as Sphaerotilus and Neomegalonema becoming more prevalent under phosphorus-limited conditions. Overall, short settling not only improved microbial selection but also prevented bulking by retaining well-aggregated biomass, thereby mitigating nutrient shortage conditions.