Project description:Investigations conducted on feral African Sacred Ibises (Threskiornisaethiopicus) in western France led to the isolation of a strain with chlamydial genetic determinants. Ultrastructural analysis, comparative sequence analysis of the 16S rRNA gene, ompA, and of a concatenate of 31 highly conserved genes, as well as determination of the whole genome sequence confirmed the relatedness of the new isolate to members of the Chlamydiaceae, while, at the same time demonstrating a unique position outside the currently recognized species of this family. We propose to name this new chlamydial species Chlamydiaibidis .
Project description:Hedgehogs’ wide distribution and breadth of habitat use means they are a good model taxon for investigating behavioural responses to winter conditions, such as low temperatures and resource availability. We investigated the over-winter behaviour of desert hedgehogs (Paraechinus aethiopicus) in Qatar by radio-tracking 20 individuals and monitoring the body mass of 31 hedgehogs. Females spent more nights (38.63% of nights tracked) inactive than males (12.6%) and had lower monthly activity levels. The mean temperature on nights where hedgehogs were inactive was 14.9 °C compared with 17.0 °C when hedgehogs were active. By December, females lost a higher percentage of their November body mass than did males, but by February males had lost a higher percentage than females. We conclude that these sex differences in behaviour are a result of differing reproductive strategies with males becoming more active early in spring to search for mates, whereas female hedgehogs conserve energy for producing and raising young and avoid harassment by males. The winter activity of males may be facilitated by the resource-rich environment created by humans at this study site, and basking behaviour. This study highlights intraspecific and interspecific variation in behavioural strategies/tactics in response to winter conditions.
Project description:Wildlife, and birds in particular, play an increasingly recognized role in the evolution and transmission of Escherichia coli that pose a threat to humans. To characterize these lineages and their potential threat from an evolutionary perspective, we isolated and performed whole-genome sequencing on 11 sequence types (STs) of E. coli recovered from the desiccated faeces of straw-necked ibis (Threskiornis spinicollis) nesting on inland wetlands located in geographically different regions of New South Wales, Australia. Carriage of virulence-associated genes was limited, and no antimicrobial resistance genes were detected, but novel variants of an insertion element that plays an important role in capturing and mobilizing antibiotic resistance genes, IS26, were identified and characterized. The isolates belonged to phylogroups B1 and D, including types known to cause disease in humans and animals. Specifically, we found E. coli ST58, ST69, ST162, ST212, ST446, ST906, ST2520, ST6096 and ST6241, and a novel phylogroup D strain, ST10208. Notably, the ST58 strain hosted significant virulence gene carriage. The sequences of two plasmids hosting putative virulence-associated factors with incompatibility groups I1 and Y, an extrachromosomal integrative/conjugative element, and a variant of a large Escherichia phage of the family Myoviridae, were additionally characterized. We identified multiple epidemiologically relevant gene signatures that link the ibis isolates to sequences from international sources, plus novel variants of IS26 across different sequence types and in different contexts.