Project description:N6-methyladenosine (m6A) is a widespread reversible chemical modification of RNAs, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m6A modified (âm6A levelsâ), or the relationship of m6A modification(s) to alternative RNA isoforms. To deconvolute the m6A epitranscriptome, we developed m6A level and isoform-characterization sequencing (m6A-LAIC-seq). We found that cells exhibit a broad range of non-stoichiometric m6A levels with cell type specificity. At the level of isoform characterization, we discovered widespread differences in use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3â untranslated regions (3â-UTRs), while nonmethylated transcript isoforms tend to use distal APA sites. m6A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m6A modifications. m6A-LAIC-seq of H1-ESC and GM12878 cell lines, each cell line has two replicates
Project description:N6-Methyladenosine (m6A) and N6,2′-O-dimethyladenosine (m6Am) are abundant mRNA modifications that regulate transcript processing and translation. The role of both, here termed m6A/m, in the human stress response are currently unknown. Here, we provide m6A/m-Seq of immortalied cell lines derived from B lymphocytes from male healthy donors or male donors diagnosed with major depressive disorder (MDD), harvested 1 h after treatment with 100 nM cortisol or mock treatment. PolyA-RNA-fragments of each sample was processed both as m6A/m-sample (RNA immunoprecipiation RIP with an m6A and m6Am antibody) and RNA-input sample.