Project description:The Formosan subterranean termite (Coptotermes formosanus) and the Asian subterranean termite (Coptotermes gestroi) are the most destructive termite pests in the world. Both species have spread to various regions worldwide with overlapping distributions in a few areas in which pre- and post-zygotic barriers against hybridization between the two species have been lifted. Although initial colony growth rates of hybrid colonies are similar to those of the parental species, colony growth appears to slow down in the hybrids after several years. Observations suggest that workers in hybrid colonies are slower to molt than those of the parental species, suggesting a disruption in this process. To understand the comprehensive gene expression profiles during the molting cycle of workers, differential gene expression profiles based on RNA-seq analysis were recorded for four mating combinations (2 conspecific workers and 2 heterospecific workers) at three different molting periods (pre-, post- and inter-molt). Many differentially expressed genes were identified between heterospecific and conspecific matings at each molting stage as well as within termite species among molting periods. We successfully identified molting-related genes by characterizing gene expression profiles of the parental species during the molting cycle conducting a time course analysis of transcriptome data. We then compared expression levels of these molting-related genes in the hybrids to identify genes that were over or under expressed compared to the parental species. Genes related to the molting cycle, muscle contraction, response to stress, and ecdysone metabolism were found to be under-expressed in hybrids relative to their parents. These differences will help elucidate the stability and fitness of hybrids between these two Coptotermes species. Moreover, identification of molting related genes in subterranean termites highlights the molecular pathways involved in the molting process in termites.
2025-09-08 | GSE283417 | GEO
Project description:Antennal transcriptome of three termite species
Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
2023-02-20 | GSE204665 | GEO
Project description:RNAseq of four termite species
Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts.