Project description:BackgroundPolyhydroxyalkanoates (PHAs) are optimal potential materials for industrial and medical uses, characterized by exceptional sustainability, biodegradability, and biocompatibility. These are primarily from various bacteria and archaea. Bacterial strains with effective PHA formation capabilities and minimal production cost form the foundation for PHA production. Detailed genomic analysis of these PHA-generating bacteria is vital to understand their PHA production pathways and enhance their synthesis capability.ResultsZZQ-149, a halophilic, PHA-producing bacterium, was isolated from the sediment of China's Qinghai Lake. Here, we decoded the full genome of ZZQ-149 using Single Molecule Real Time (SMRT) technology based on PacBio RS II platform, coupled with Illumina sequencing platforms. Physiological, chemotaxonomic traits, and phylogenetic analysis based on 16 S rRNA gene and single copy core genes of ninety-nine Halomonas type strains identified ZZQ-149 as the type strain of Halomonas qinghailakensis. Furthermore, a low average nucleotide identity (ANI, < 95%) delineated the genetic differences between ZZQ-149 and other Halomonas species. The ZZQ-149 genome, with a DNA G + C content of 52%, comprises a chromosome (3, 798, 069 bps) and a plasmid (6, 107 bps). The latter encodes the toxin-antitoxin system, BrnT/BrnA. Through comprehensive genome sequencing and analysis, we identified multiple PHA-synthesizing enzymes and an unprecedented combination of eight PHA-synthesizing pathways in ZZQ-149.ConclusionsBeing a halophilic, PHA-producing bacterium, ZZQ-149 exhibits potential as a high PHA producer for engineered bacteria via genome editing while ensuring low-cost PHA production through continuous, unsterilized fermentation.
Project description:Biomanufacturing remains financially uncompetitive with the lower cost but higher carbon emitting hydrocarbon based chemical industry. Novel chassis organisms may enable cost reductions with respect to traditional chassis such as E. coli and so open an economic rout to low emission biomanufacturing. Extremophile bacteria exemplify that potential. Salt tolerant halomonas species thrive in conditions inimical to other organisms. Their adoption would eliminate the cost of sterilising equipment. Novel chassis are inevitably poorly understood in comparison to established organisms. Rapid characterisation and community data sharing will facilitate organisms’ adoption for biomanufacturing. This paper describes baseline proteomics data set for Halomonas bluephagenesis TD01 under active development for biomanufactoring. The data record comprises a newly sequenced genome for the organism; evidence for expression of 1150 proteins (30% of the proteome) including baseline quantification of 1050 proteins (27% of the proteome) and a spectral library enabling re-use for targeted proteomics assays. Protein data is annotated with KEGG Orthology enabling rapid matching of quantitative data to pathways of interest to biomanufacturing.