Project description:ABSTRACT RNA binding motif proteins (RBMs) have been widely implicated in the tumorigenesis of multiple human cancers, but scarcely studied in nasopharyngeal carcinoma (NPC). Here, we compare the mRNA levels of 29 RBMs between 87 NPC and 10 control samples. We find that RBM47 is frequently upregulated in NPC specimens and its high expression is associated with poor prognosis of patients with NPC. Biological experiments show that RBM47 plays an oncogenic role in NPC cells. Mechanically, RBM47 binds to the promoter and regulates the transcription of BCAT1 and its overexpression partially rescues the inhibitory effects of RBM47-knockdown on NPC cells. Moreover, transcriptome analysis reveals that RBM47 regulates alternative splicing of pre-mRNA, including those cancer-related, to a large extent in NPC cells. Furthermore, RBM47 binds to hnRNPM and cooperativelyjointly regulates multiple splicing events in NPC cells. In addition, we find that knockdown of hnRNPM inhibits proliferation and migration of NPC cells. Taken together, our study shows that RBM47 promotes the progression of NPC through multiple pathways, acting as a transcriptional factor and a modulator of alternative splicing in cooperation with hnRNPM. Our study also highlights that RBM47 and hnRNPM could be prognostic factors and potential therapeutic targets for NPC. Keywords RBM47, BCAT1, Alternative splicing, hnRNPM, Nasopharyngeal Carcinoma (NPC)
Project description:Through integrative analysis of clinical breast cancer gene expression datasets, cell line models of breast cancer progression, and mutation data from cancer genome resequencing studies, we have identified RNA binding motif protein 47 (RBM47) as a candidate suppressor of breast cancer metastasis. RBM47 inhibited breast cancer progression in experimental models. Transcriptome-wide analysis of RBM47 localization by HITS-CLIP revealed widespread binding to mRNAs, preferentially at the 3' UTRs. RBM47 altered the abundance of a subset of its target mRNAs. Some of the mRNAs stabilized by RBM47, as exemplified by dickkopf WNT signaling pathway inhibitor 1 (DKK1), mediate tumor suppressive effects downstream of RBM47. This work identifies RBM47 as a suppressor of breast cancer progression and highlights the potential of global RNA modulatory events as a source of metastasis-promoting phenotypic traits. Cancer cells transduced with doxycycline-inducible wildtype RBM47 or the RBM47-I281fs mutant, treated with increasing concentrations of doxycycline.
Project description:Through integrative analysis of clinical breast cancer gene expression datasets, cell line models of breast cancer progression, and mutation data from cancer genome resequencing studies, we have identified RNA binding motif protein 47 (RBM47) as a candidate suppressor of breast cancer metastasis. RBM47 inhibited breast cancer progression in experimental models. Transcriptome-wide analysis of RBM47 localization by HITS-CLIP revealed widespread binding to mRNAs, preferentially at the 3' UTRs. RBM47 altered the abundance of a subset of its target mRNAs. Some of the mRNAs stabilized by RBM47, as exemplified by dickkopf WNT signaling pathway inhibitor 1 (DKK1), mediate tumor suppressive effects downstream of RBM47. This work identifies RBM47 as a suppressor of breast cancer progression and highlights the potential of global RNA modulatory events as a source of metastasis-promoting phenotypic traits.