Project description:The genus Periweissella was proposed as a novel genus in the Lactobacillaceae in 2022. However, the phylogenetic relationship between Periweissella and other heterofermentative lactobacilli, and the genetic and physiological properties of this genus remain unclear. This study aimed to determine the phylogenetic relationship between Periweissella and the two closest genera, Weissella and Furfurilactobacillus, by the phylogenetic analysis and calculation of (core gene) pairwise average amino acid identity. Targeted genomic analysis showed that fructose bisphosphate aldolase was only present in the genome of Pw. cryptocerci. Mannitol dehydrogenase was found in genomes of Pw. beninensis, Pw. fabaria, and Pw. fabalis. Untargeted genomic analysis identified the presence of flagellar genes in Periweissella but not in other closely related genera. Phenotypes related to carbohydrate fermentation and motility matched the genotypes. Motility genes were organized in a single operon and the proteins shared a high amino acid similarity in the genus Periweissella. The relatively low similarity of motility operons between Periweissella and other motile lactobacilli indicated the acquisition of motility by the ancestral species. Our findings facilitate the phylogenetic, genetic, and phenotypic understanding of the genus Periweissella.ImportanceThe genus Periweissella is a heterofermentative genus in the Lactobacillaceae which includes predominantly isolates from cocoa fermentations in tropical climates. Despite the relevance of the genus in food fermentations, genetic and physiological properties of the genus are poorly characterized and genome sequences became available only after 2020. This study characterized strains of the genus by functional genomic analysis, and by determination of metabolic and physiological traits. Phylogenetic analysis revealed that Periweissella is the evolutionary link between rod-shaped heterofermentative lactobacilli and the coccoid Leuconostoc clade with the genera Weissella and Furfurilactobacillus as closest relatives. Periweissella is the only heterofermentative genus in the Lactobacillaceae which comprises predominantly motile strains. The genomic, physiological, and metabolic characterization of Periweissella may facilitate the potential use of strains of the genus as starter culture in traditional or novel food fermentations.
Project description:Although numerous strains belonging to the Weissella genus have been described in the last decades for their probiotic and biotechnological potential, others are known to be opportunistic pathogens of humans and animals. Here, we investigated the probiotic potential of two Weissella and four Periweissella type strains belonging to the species Weissella diestrammenae, Weissella uvarum, Periweissella beninensis, Periweissella fabalis, Periweissella fabaria, and Periweissella ghanensis by genomic and phenotypic analyses, and performed a safety assessment of these strains. Based on the results of the survival to simulated gastrointestinal transit, autoaggregation and hydrophobicity characteristics, as well as adhesion to Caco-2 cells, we showed that the P. beninensis, P. fabalis, P. fabaria, P. ghanensis, and W. uvarum type strains exhibited a high probiotic potential. The safety assessment, based on the genomic analysis, performed by searching for virulence and antibiotic resistance genes, as well as on the phenotypic evaluation, by testing hemolytic activity and antibiotic susceptibility, allowed us to identify the P. beninensis type strain as a safe potential probiotic microorganism. IMPORTANCE A comprehensive analysis of safety and functional features of six Weissella and Periweissella type strains was performed. Our data demonstrated the probiotic potential of these species, indicating the P. beninensis type strain as the best candidate based on its potential probiotic features and the safety assessment. The presence of different antimicrobial resistance profiles in the analyzed strains highlighted the need to establish cutoff values to perform a standardized safety evaluation of these species, which, in our opinion, should be mandatory on a strain-specific basis.
Project description:The genus Weissella and the recently described genus Periweissella, to which some previously named Weissella species have been reclassified as a result of a taxogenomic assessment, includes lactic acid bacteria species with high biotechnological and probiotic potential. Only one species, namely, Periweissella (P.) beninensis, whose type strain has been shown to possess probiotic features, has so far been described to be motile. However, the availability of numerous genome sequences of Weissella and Periweissella species prompted the possibility to screen for the presence of the genetic determinants encoding motility in Weissella and Periweissellas spp. other than P. beninensis. Herein, we performed a comprehensive genomic analysis to identify motility-related proteins in all Weissella and Periweissella species described so far, and extended the analysis to the recently sequenced Lactobacillaceae spp. Furthermore, we performed motility assays and transmission electron microscopy (TEM) on Periweissella type strains to confirm the genomic prediction. The homology-based analysis revealed genes coding for motility proteins only in the type strains of P. beninensis, P. fabalis, P. fabaria and P. ghanensis genomes. However, only the P. beninensis type strain was positive in the motility assay and displayed run-and-tumble behavior. Many peritrichous and long flagella on bacterial cells were visualized via TEM, as well. As for the Lactobacillaceae, in addition to the species previously described to harbor motility proteins, the genetic determinants of motility were also found in the genomes of the type strains of Lactobacillus rogosae and Ligilactobacillus salitolerans. This study, which is one of the first to analyze the genomes of Weissella, Periweissella and the recently sequenced Lactobacillaceae spp. for the presence of genes coding for motility proteins and which assesses the associated motility phenotypes, provides novel results that expand knowledge on these genera and are useful in the further characterization of lactic acid bacteria.
Project description:Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.