Project description:To delineate the relationship between G2E3-catalyzed H3K14ub and H3K9me3 in genome-wide, we performed chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) for H3K14ub, H3K9me3 and H3K4me3 in Parental (sgG2E3) control HeLa cells and G2E3 KO-10 HeLa cells. Our data demonstrated that G2E3-catalyzed H3K14ub potentiates H3K9 trimethylation (H3K9me3) by SUV39H and is specifically required for SUV39H compartmentalization and H3K9me3 in pericentromeric heterochromatin. Loss ofG2E3 severely impairs not only pericentromeric heterochromatin organization, but also results in aberrant accumulation of SUV39H and H3K9me3 in numerous euchromatin regions and a widespread transcriptional repression (combined with RNA-seq data).
Project description:Two dominant processes organizing chromosomes are loop extrusion and the compartmental segregation of active and inactive chromatin. The molecular players involved in loop extrusion during interphase, cohesin and CTCF, have been extensively studied and experimentally validated. However, neither the molecular determinants nor the functional roles of compartmentalization are well understood. Here, we distinguish three inactive chromatin states using contact frequency profiling, comprising two types of heterochromatin and a previously uncharacterized inactive state exhibiting a neutral interaction preference. We find that heterochromatin marked by long continuous stretches of H3K9me3, HP1α and HP1β correlates with a conserved signature of strong compartmentalization and is abundant in HCT116 colon cancer cells. We demonstrate that disruption of DNA methyltransferase activity dramatically remodels genome compartmentalization as a consequence of the loss of H3K9me3 and HP1 binding. Interestingly, H3K9me3-HP1α/β is replaced by the neutral inactive state and retains late replication timing. Furthermore, we show that H3K9me3-HP1α/β heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF, explaining a paucity of visible loop extrusion-associated patterns in Hi-C. Accordingly, CTCF loop extrusion barriers are reactivated upon loss of H3K9me3-HP1α/β, not as a result of canonical demethylation of the CTCF binding motif but due to an intrinsic resistance of H3K9me3-HP1α/β heterochromatin to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the inactive portion of the genome and establishes new connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.
Project description:Two dominant processes organizing chromosomes are loop extrusion and the compartmental segregation of active and inactive chromatin. The molecular players involved in loop extrusion during interphase, cohesin and CTCF, have been extensively studied and experimentally validated. However, neither the molecular determinants nor the functional roles of compartmentalization are well understood. Here, we distinguish three inactive chromatin states using contact frequency profiling, comprising two types of heterochromatin and a previously uncharacterized inactive state exhibiting a neutral interaction preference. We find that heterochromatin marked by long continuous stretches of H3K9me3, HP1α and HP1β correlates with a conserved signature of strong compartmentalization and is abundant in HCT116 colon cancer cells. We demonstrate that disruption of DNA methyltransferase activity dramatically remodels genome compartmentalization as a consequence of the loss of H3K9me3 and HP1 binding. Interestingly, H3K9me3-HP1α/β is replaced by the neutral inactive state and retains late replication timing. Furthermore, we show that H3K9me3-HP1α/β heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF, explaining a paucity of visible loop extrusion-associated patterns in Hi-C. Accordingly, CTCF loop extrusion barriers are reactivated upon loss of H3K9me3-HP1α/β, not as a result of canonical demethylation of the CTCF binding motif but due to an intrinsic resistance of H3K9me3-HP1α/β heterochromatin to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the inactive portion of the genome and establishes new connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.
Project description:Two dominant processes organizing chromosomes are loop extrusion and the compartmental segregation of active and inactive chromatin. The molecular players involved in loop extrusion during interphase, cohesin and CTCF, have been extensively studied and experimentally validated. However, neither the molecular determinants nor the functional roles of compartmentalization are well understood. Here, we distinguish three inactive chromatin states using contact frequency profiling, comprising two types of heterochromatin and a previously uncharacterized inactive state exhibiting a neutral interaction preference. We find that heterochromatin marked by long continuous stretches of H3K9me3, HP1α and HP1β correlates with a conserved signature of strong compartmentalization and is abundant in HCT116 colon cancer cells. We demonstrate that disruption of DNA methyltransferase activity dramatically remodels genome compartmentalization as a consequence of the loss of H3K9me3 and HP1 binding. Interestingly, H3K9me3-HP1α/β is replaced by the neutral inactive state and retains late replication timing. Furthermore, we show that H3K9me3-HP1α/β heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF, explaining a paucity of visible loop extrusion-associated patterns in Hi-C. Accordingly, CTCF loop extrusion barriers are reactivated upon loss of H3K9me3-HP1α/β, not as a result of canonical demethylation of the CTCF binding motif but due to an intrinsic resistance of H3K9me3-HP1α/β heterochromatin to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the inactive portion of the genome and establishes new connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.
Project description:Two dominant processes organizing chromosomes are loop extrusion and the compartmental segregation of active and inactive chromatin. The molecular players involved in loop extrusion during interphase, cohesin and CTCF, have been extensively studied and experimentally validated. However, neither the molecular determinants nor the functional roles of compartmentalization are well understood. Here, we distinguish three inactive chromatin states using contact frequency profiling, comprising two types of heterochromatin and a previously uncharacterized inactive state exhibiting a neutral interaction preference. We find that heterochromatin marked by long continuous stretches of H3K9me3, HP1α and HP1β correlates with a conserved signature of strong compartmentalization and is abundant in HCT116 colon cancer cells. We demonstrate that disruption of DNA methyltransferase activity dramatically remodels genome compartmentalization as a consequence of the loss of H3K9me3 and HP1 binding. Interestingly, H3K9me3-HP1α/β is replaced by the neutral inactive state and retains late replication timing. Furthermore, we show that H3K9me3-HP1α/β heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF, explaining a paucity of visible loop extrusion-associated patterns in Hi-C. Accordingly, CTCF loop extrusion barriers are reactivated upon loss of H3K9me3-HP1α/β, not as a result of canonical demethylation of the CTCF binding motif but due to an intrinsic resistance of H3K9me3-HP1α/β heterochromatin to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the inactive portion of the genome and establishes new connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.
Project description:This SuperSeries is composed of the following subset Series: GSE35777: A molecular mechanism for compartmentalization and silencing of chromatin domains at the nuclear lamina [Tiling Array] GSE36048: A molecular mechanism for compartmentalization and silencing of chromatin domains at the nuclear lamina [ChIP-seq] Refer to individual Series
Project description:Germ cells manifest a unique gene expression program and regain totipotency in the zygote. Here, we perform Hi-C analysis to examine 3D chromatin organization in male germ cells during spermatogenesis. We show that the highly compartmentalized 3D chromatin organization characteristic of interphase nuclei is attenuated in meiotic prophase. Meiotic prophase is predominated by short-range intrachromosomal interactions that represent a condensed form akin to that of mitotic chromosomes. However, unlike mitotic chromosomes, meiotic chromosomes display weak genomic compartmentalization, weak topologically associating domains, and localized point interactions in prophase. In postmeiotic round spermatids, genomic compartmentalization increases and gives rise to the strong compartmentalization seen in mature sperm. The X chromosome lacks domain organization during meiotic sex-chromosome inactivation. We propose that male meiosis occurs amid global reprogramming of 3D chromatin organization and that strengthening of chromatin compartmentalization takes place in spermiogenesis to prepare the next generation of life.
Project description:This SuperSeries is composed of the following subset Series: GSE26018: Crosstalk between gene body DNA methylation, H3K9me3 and H3K36me3 chromatin marks and transcription [HuEx-1_0-st] GSE26019: Crosstalk between gene body DNA methylation, H3K9me3 and H3K36me3 chromatin marks and transcription [HuGene-1_0-st] GSE26038: Crosstalk between gene body DNA methylation, H3K9me3 and H3K36me3 chromatin marks and transcription [HuEx-1_0-st, transcript] GSE26040: Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks Refer to individual Series