Project description:The transcriptome of a light sensitive tea cultivar ‘Huangjinya’ plants exposed to sunlight and shade were analyzed by high-throughput sequencing followed by de novo assembly.
Project description:Transcriptional profiling of pear tree comparing a resistant/tolerant cultivar with a susceptible cultivar to the Stemphylium vesicarium fungus Rocha' pear is an economically important portuguese Pyrus communis L. cultivar very susceptible to the Stemphylium vesicarium pathogenic fungus, the brown spot agent, causing huge decrease on fruit quality and yield production. Field control of brown spot disease is based in systemic application of antifungal chemicals with high economic costs and dramatic consequences to public health and environmental pollution. Plant-pathogen interactions involve a series of events encompassing constitutive and induced plant defence responses whose dissection has been a research target for control many crop diseases. The biosynthesis of cell wall polymers and antifungal compounds appear to be an efficient physical and chemical barrier to infection.To understand the molecular responses behind defence mechanisms of resistant/tolerant and susceptible cultivars of Pyrus communis L. to the S. vesicarium fungus, cDNA microarray technology was used to identify the genes differentially expressed along a time course leaf inoculation between 'Rocha' pear cultivar (a high susceptible cultivar) and 'Ercolini' pear cultivar (a resistant/tolerant pear cultivar). This study aims to contribute with information on the molecular mechanisms involved in host-pathogen interactions responsible for pear tree brown spot disease and resistance to Stemphylium vesicarium.
Project description:We applied the RNA-Seq approach to reconstruct the transcriptome of Vitis vinifera cv. Corvina, using RNA pooled from a comprehensive set of sampled tissues in different organs and development steps, and we were able to reconstruct some novel and putative private Corvina genes. We analyzed the expression of these genes in three berry developmental conditions, and posit that they may play some role in the formation of the mature organ. Background: Plants display a high genetic and phenotypic variability among different cultivars. Understanding the genetic components that contribute to phenotypic diversity is necessary to disentangle genetic factors from the environment. Given the high degree of genetic diversity among plant cultivars a whole-genome sequencing and re-annotation of each variety is required but a reliable genome assembly is hindered by the high heterozigosity and sequence divergence. Results: we show the feasibility of an approach based on sequencing of cDNA by RNA-Seq to analyze varietal diversity between a local grape cultivar Corvina and the PN40024 grape reference genome. We detected 15,260 known genes and we annotated alternative splicing isoforms for 9,463 genes. Our approach allowed to define 2,321 protein coding putative novel genes in unannotated or unassembled regions of the reference genome PN40024 and 180 putative private Corvina genes whose sequence is not shared with the reference genome. Conclusions: With a de novo assembly based approach we were able to reconstruct a substantial part of the Corvina transcriptome and we improved substantially known genes annotations by better defining the structure of known genes, annotating splicing isoforms and detecting unannotated genes. Moreover our results clearly define sets of private genes which are likely part of the âdispensableâ genome and potentially involved into influencing some cultivar-specific characteristics. In plant biology a transcriptome de novo assembly approach should not be limited to species where no reference genome is available as it can improve the annotation lead to the identification of genes peculiar of a cultivar.
Project description:Transcriptional profiling of pear tree comparing a resistant/tolerant cultivar with a susceptible cultivar to the Stemphylium vesicarium fungus Rocha' pear is an economically important portuguese Pyrus communis L. cultivar very susceptible to the Stemphylium vesicarium pathogenic fungus, the brown spot agent, causing huge decrease on fruit quality and yield production. Field control of brown spot disease is based in systemic application of antifungal chemicals with high economic costs and dramatic consequences to public health and environmental pollution. Plant-pathogen interactions involve a series of events encompassing constitutive and induced plant defence responses whose dissection has been a research target for control many crop diseases. The biosynthesis of cell wall polymers and antifungal compounds appear to be an efficient physical and chemical barrier to infection.To understand the molecular responses behind defence mechanisms of resistant/tolerant and susceptible cultivars of Pyrus communis L. to the S. vesicarium fungus, cDNA microarray technology was used to identify the genes differentially expressed along a time course leaf inoculation between 'Rocha' pear cultivar (a high susceptible cultivar) and 'Ercolini' pear cultivar (a resistant/tolerant pear cultivar). This study aims to contribute with information on the molecular mechanisms involved in host-pathogen interactions responsible for pear tree brown spot disease and resistance to Stemphylium vesicarium. Experimental condition: 'Ercolini' vs 'Rocha' (each experiment including 5 plants from each cultivar). 3 time-points: water-inoculation (T0h), 6 hours after inoculation with S. vesicarium (T6h) and 24 hours after inoculation with S. vesicarium. Biological replicates: 3 in each time-point. One replicate per array.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with either water (H2O), a Fg strain (GZ3639) producing the mycotoxin deoxynivalenol (+DON), or a GZ3639-derived Fg strain which has been inactivated at the Tri5 locus (-DON).
Project description:Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.