Project description:Cancer is one of the leading causes of mortality in the world. Unfortunately, the present anticancer chemotherapeutics display high cytotoxicity. Accordingly, the discovery of new anticancer agents with lower side effects is highly necessitated. This study aimed to discover an anticancer compound from Hemiscorpius lepturus scorpion venom. Bioactivity-guided chromatography was performed to isolate an active compound against colon and breast cancer cell lines. 2D electrophoresis and MALDI-TOF were performed to identify the molecule. A partial protein sequence was obtained by mass spectrometry, while the full-length was deciphered using a cDNA library of the venom gland by bioinformatics analyses and was designated as leptulipin. The gene was cloned in pET-26b, expressed, and purified. The anticancer effect and mechanism action of leptulipin were evaluated by MTT, apoptosis, and cell cycle assays, as well as by gene expression analysis of apoptosis-related genes. The treated cells displayed inhibition of cell proliferation, altered morphology, DNA fragmentation, and cell cycle arrest. Furthermore, the treated cells showed a decrease in BCL-2 expression and an increase in Bax and Caspase 9 genes. In this study, we discovered a new anticancer protein from H. lepturus scorpion venom. Leptulipin showed significant anticancer activity against breast and colon cancer cell lines.
| S-EPMC9000277 | biostudies-literature
Project description:Complete mitochondrial genome sequence of Mystacoleucus lepturus
Project description:Hemiscorpius lepturus scorpion stings do not induce considerable pain based on epidemiological surveys conducted in the southwest part of Iran. Accordingly, this study was aimed to identify the analgesic molecule in H. lepturus venom by analyzing a cDNA library of the scorpion venom gland looking for sequences having homology with known animal venom analgesic peptides. The analgesic molecule is a cysteine rich peptide of 55 amino acids. the synthetic peptide was deprotected and refolded. RP-HPLC, Ellman's, and DLS assays confirmed the refolding accuracy. Circular dichroism (CD) showed helix and beta sheet contents. This peptide, called leptucin, demonstrated 95% analgesic activity at the dose of 0.48 mg/kg in hot plate assay. Leptucin at the doses of 0.32, 0.48, and 0.64 mg/kg showed 100% activity in thermal tail flick test. No hemolysis or cytotoxicity was observed at 8 and 16 µg. Histopathology evaluations indicated no hepatotoxicity, nephrotoxicity, and cardiotoxicity. We thus report that leptucin is the analgesic agent of H. lepturus venom. Regarding the high in vivo efficacy of leptucin and the fact it shows no observable toxicity, it could be suggested as a drug lead in a preclinical study of acute pain as well as the study of its mechanism of action.
Project description:Hemoscorpius lepturus is the most medically important scorpion in Iran. The clinical signs of H. lepturus envenomation are remarkably similar to those reported for brown spiders, including dermonecrosis, hematuria, renal failure and even death. The lethality and toxicity of brown spiders' venom have been attributed to its phospholipase D activity. This study aims to identify a phospholipase D with possible lethality and dermonecrotic activity in H. lepturus venom. In this study, a cDNA library of the venom glands was generated by Illumina RNA sequencing. Phospholipase D (PLD) from H. lepturus was characterized according to its significant similarity with PLDs from brown spiders. The main chain designated as Hl-RecPLD1 (the first recombinant isoform of H. lepturus PLD) was cloned, expressed and purified. Sphingomyelinase, dermonecrotic and lethal activities were examined. Hl-PLD1 showed remarkable sequence similarity and structural homology with PLDs of brown spiders. The conformation of Hl-PLD1 was predicted as a "TIM beta/alpha-barrel". The lethal dose 50 (LD50) and dermonecrotic activities of Hl-RecPLD1 were determined as 3.1 μg/mouse and 0.7 cm2 at 1 μg respectively. It is the first report indicating that a similar molecular evolutionary mechanism has occurred in both American brown spiders and this Iranian scorpion. In conclusion, Hl-RecPLD1 is a highly active phospholipase D, which would be considered as the lethal dermonecrotic toxin in H. lepturus venom.
Project description:BackgroundHemiscorpius lepturus is one of the most dangerous scorpions in Iran and the world. Numerous studies have been conducted on phospholipases, especially phospholipase D, in this scorpion's venom, and the results have shown this protein to be the main cause of death. Therefore, one of the most effective ways of preventing fatalities is to produce a toxoid vaccine from the deadly toxin of the venom. The present study was conducted to assess the non-toxicity of this toxoid and the safety of the vaccine candidate in BALB/c mice.MethodsThe production of interferon-gamma and interleukin-4 cytokines in the spleen cells of the mice was measured using ELISpot assay 28 days following immunization with rPLD toxoid.ResultsThe unpaired t-test results showed a significant increase in the concentration of IFN-γ cytokine in the vaccinated mice (P= 0.001), indicating that the immune system is directed toward the Th1 pattern, while no significant difference was observed in the levels of IL-4 (P= 0.16) despite an increase in this cytokine. The in-vivo tests showed that the mice immunized with interval doses of 80µg of toxoid were completely protected against 10 × the LD100 of the venom. Moreover, the toxoid had no dermonecrotic effects and caused no necrotic and inflammatory complications in the rabbit skin.ConclusionAs a vaccine, the toxoid has the potential to increase the Th1 cytokine response and, subsequently, increase acquired cellular immunity. Thus, this toxoid appears to be able to provide an effective vaccine against the venom of Hemiscorpius lepturus.