Project description:modENCODE_submission_5018 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_5007 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_4998 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_4094 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of many of the non-histone chromosomal proteins on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested chromatin-binding protein. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_4089 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_4082 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_4080 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_4078 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf