Project description:This project defines the transcriptomes of XO (male) and XX (female or mutant pseudo-female) Caenorhabditis nematodes. The data allow the overall composition and sexual regulation of the transcriptome within a single species to be determined. In addition, the five related species studied allow meta-comparisons between them. Because two of the five (C. elegans and C. briggsae) produce a self-fertile XX hermaphrodite, while the XX sex in the remaining three (C. japonica, C. remanei, and C. brenneri) are true females, the data are particularly useful for inferring effects of sexual mode on genome-wide gene expression.
Project description:While nucleotide-resolution maps of genomic structural variants (SVs) have provided insights into the origin and impact on phenotypic diversity in humans, comparable maps in nonhuman primates have thus far been lacking. Using massively parallel DNA sequencing we constructed fine-resolution, species-specific structural variation and segmental duplication maps for five chimpanzees, five orang-utans, and five rhesus macaques. The SV maps, comprising thousands of deletions, duplications, and mobile element insertions, revealed a high activity of retrotransposition in macaques. Non-allelic homologous recombination, linked with genomic architecture, primarily shaped the genomes of great apes resulting in different SV formation mechanism landscapes across species, with distinct functional consequences. Transcriptome analyses across nonhuman primates and humans revealed significant effects of species-specific gene duplications on gene expression, with these effects displaying remarkable diversity in direction and magnitude. Thirteen inter-species gene duplications coincided with the species-specific gain of expression in a new tissue, implicating these duplications in function acquisition.
Project description:This project defines the transcriptomes of XO (male) and XX (female or mutant pseudo-female) Caenorhabditis nematodes. The data allow the overall composition and sexual regulation of the transcriptome within a single species to be determined. In addition, the five related species studied allow meta-comparisons between them. Because two of the five (C. elegans and C. briggsae) produce a self-fertile XX hermaphrodite, while the XX sex in the remaining three (C. japonica, C. remanei, and C. brenneri) are true females, the data are particularly useful for inferring effects of sexual mode on genome-wide gene expression. L4 larvae and adults were pooled for each sex for five species (C. elegans, C. briggsae, C. japonica, C. brenneri, and C. remanei). Each of these 10 species-sex combinations was replicated three times, for a total of 30 samples.