Project description:Despite having many historically reported ethnomedicinal uses, Centaurium erythraea Rafn (Rafn and Buchs, 1800; common centaury) also produces cytotoxic secondary metabolites, and its presence should be carefully monitored. In this study, the complete chloroplast of Centaurium erythraea subsp. majus (Hoffmanns. & Link) M.Laínz (Laínz, 1971) isolate BPTPS121 is described, being the first available plastome belonging to the Centaurium genus. The chloroplast genome (GenBank accession number: ON641347) is 153,107 bp in length with 37.9% GC content, displaying a quadripartite structure that contains a pair of inverted repeat regions (25,166 bp each), separated by a large single-copy (84,388 bp) and small single-copy (18,387 bp) regions. A total of 129 genes were predicted, including 37 tRNA genes, eight rRNA genes, and 84 protein-coding genes. The phylogenetic analysis showed that isolate BPTPS121 is placed under the Gentianaceae family, belonging to the Gentianales order. The maximum-likelihood tree supports the already described lineage divergence in the Gentianaceae family, with C. erythraea subsp. majus belonging to the Chironieae tribe positioned below the Exaceae tribe and above the Potalieae and the entire Gentianeae tribes. This study will contribute to conservation, phylogenetic, and evolutionary studies, as well as DNA barcoding applications for food, feed, and supplements safety purposes.
Project description:We report the high-throughput profiling of saccharopolyspora erythraea including a industrial strain HL3168 E3 and a wild-type strain NRRL23338. The aim was to evaluate the difference in expression of sRNA predicted in silico related to secondary metabolites in Saccharopolyspora erythraea.
Project description:To understand the biosynthesis of C. majus BIAs, we performed de novo transcriptome sequencing of leaf and root tissues of C. majus using Illumina high-throughput sequencing technology.
Project description:We report the high-throughput profiling of saccharopolyspora erythraea including a industrial strain HL3168 E3 and a wild-type strain NRRL23338. The aim was to evaluate the difference in expression of sRNA predicted in silico related to secondary metabolites in Saccharopolyspora erythraea. Comparison of the gene expression difference in 2 Saccharopolyspora erythraea strains.
Project description:Centaurium erythraea (centaury) is a medicinal plant with exceptional developmental plasticity in vitro and vigorous, often spontaneous, regeneration via shoot organogenesis and somatic embryogenesis, during which arabinogalactan proteins (AGPs) play an important role. AGPs are highly glycosylated proteins belonging to the super family of O-glycosylated plant cell surface hydroxyproline-rich glycoproteins (HRGPs). HRGPs/AGPs are intrinsically disordered and not well conserved, making their homology-based mining ineffective. We have applied a recently developed pipeline for HRGP/AGP mining, ragp, which is based on machine learning prediction of proline hydroxylation, to identify HRGP sequences in centaury transcriptome and to classify them into motif and amino acid bias (MAAB) classes. AGP sequences with low AG glycomotif representation were also identified. Six members of each of the three AGP subclasses, fasciclin-like AGPs, receptor kinase-like AGPs and AG peptides, were selected for phylogenetic and expression analyses. The expression of these 18 genes was recorded over 48 h following leaf mechanical wounding, as well as in 16 tissue samples representing plants from nature, plants cultivated in vitro, and developmental stages during shoot organogenesis and somatic embryogenesis. None of the selected genes were upregulated during both wounding recovery and regeneration. Possible functions of AGPs with the most interesting expression profiles are discussed.