Project description:The molecular pathogenesis of orbital lymphoproliferative disorders, such as immunoglobulin G4-related ophthalmic disease (IgG4-ROD) and orbital mucosa-associated lymphoid tissue (MALT) lymphoma, remains essentially unknown. Differentiation between the two disorders, which is important since work-up and treatment can vary greatly, is often challenging due to the lack of specific biomarkers. Although miRNAs play an important role in the regulation of carcinogenesis and inflammation, the relationship between miRNA and orbital lymphoproliferative diseases remains unknown. A comprehensive analysis of 2,565 miRNAs was performed in biopsied specimens and serum of 17 cases with IgG4-ROD and 21 cases with orbital MALT lymphoma. We identified specific miRNA signatures, their miRNA target pathways, and network analysis associated with IgG4-ROD and orbital MALT lymphoma. Machine-learning analysis identified miR-202-3p and miR-7112-3p as the best discriminators of IgG4-ROD and orbital MALT lymphoma, respectively. In the tissue pathway, Longevity regulating pathway in IgG4-ROD and MAPK signaling pathway in orbital MALT lymphoma were most enriched by downregulated miRNAs. This is the first evidence of the miRNA profile in biopsied specimens and serum of patients with IgG4-ROD and orbital MALT lymphoma. These data will be useful for developing diagnostic and therapeutic interventions, as well as elucidating of these disorders.
Project description:Histone deacetylase 9 (HDAC9) is expressed in B cells, and its overexpression has been observed in B-lymphoproliferative disorders, including B-cell non-Hodgkin lymphoma (B-NHL). We examined HDAC9 protein expression and copy number alterations in primary B-NHL samples, identifying high HDAC9 expression among various lymphoma entities and HDAC9 copy number gains in 50% of diffuse large B-cell lymphoma (DLBCL). To study the role of HDAC9 in lymphomagenesis, we generated a genetically engineered mouse (GEM) model that constitutively expressed an HDAC9 transgene throughout B-cell development under the control of the immunoglobulin heavy chain (IgH) enhancer (Eμ). Here, we report that the Eμ-HDAC9 GEM model develops splenic marginal zone lymphoma and lymphoproliferative disease (LPD) with progression towards aggressive DLBCL, with gene expression profiling supporting a germinal center cell origin, as is also seen in human B-NHL tumors. Analysis of Eμ-HDAC9 tumors suggested that HDAC9 might contribute to lymphomagenesis by altering pathways involved in growth and survival, as well as modulating BCL6 activity and p53 tumor suppressor function. Epigenetic modifications play an important role in the germinal center response, and deregulation of the B-cell epigenome as a consequence of mutations and other genomic aberrations are being increasingly recognized as important steps in the pathogenesis of a variety of B-cell lymphomas. A thorough mechanistic understanding of these alterations will inform the use of targeted therapies for these malignancies. These findings strongly suggest a role for HDAC9 in B-NHL and establish a novel GEM model for the study of lymphomagenesis and, potentially, preclinical testing of therapeutic approaches based on histone deacetylase inhibitors.
Project description:Histone deacetylase 9 (HDAC9) is expressed in B cells, and its overexpression has been observed in B-lymphoproliferative disorders, including B-cell non-Hodgkin lymphoma (B-NHL). We examined HDAC9 protein expression and copy number alterations in primary B-NHL samples, identifying high HDAC9 expression among various lymphoma entities and HDAC9 copy number gains in 50% of diffuse large B-cell lymphoma (DLBCL). To study the role of HDAC9 in lymphomagenesis, we generated a genetically engineered mouse (GEM) model that constitutively expressed an HDAC9 transgene throughout B-cell development under the control of the immunoglobulin heavy chain (IgH) enhancer (Eμ). Here, we report that the Eμ-HDAC9 GEM model develops splenic marginal zone lymphoma and lymphoproliferative disease (LPD) with progression towards aggressive DLBCL, with gene expression profiling supporting a germinal center cell origin, as is also seen in human B-NHL tumors. Analysis of Eμ-HDAC9 tumors suggested that HDAC9 might contribute to lymphomagenesis by altering pathways involved in growth and survival, as well as modulating BCL6 activity and p53 tumor suppressor function. Epigenetic modifications play an important role in the germinal center response, and deregulation of the B-cell epigenome as a consequence of mutations and other genomic aberrations are being increasingly recognized as important steps in the pathogenesis of a variety of B-cell lymphomas. A thorough mechanistic understanding of these alterations will inform the use of targeted therapies for these malignancies. These findings strongly suggest a role for HDAC9 in B-NHL and establish a novel GEM model for the study of lymphomagenesis and, potentially, preclinical testing of therapeutic approaches based on histone deacetylase inhibitors.
Project description:Diffuse large B-cell lymphoma (DLBCL) represents the most common subtype of malignant lymphoma and is heterogeneous with respect to morphology, biology, and clinical presentation.However, a robust prognostic factor based on cell biology of DLBCL has not yet been determined.To find the biomarker which may associate with clinical outcome in patients with DLBCL, microarray analysis was performed to screen a novel biomarker.
Project description:Epstein-Barr virus (EBV) is a major cause of immunosuppression-related lymphomas. EB-driven lymphoproliferative disease complicates up to 20% of transplants, and EBV is a major cause of human immunodeficieciency virus associated lymphomas. Despite successful antiretroviral therapy, the incidence of EBV-associated Hodgkin lymphoma continues to increase in HIV+ individuals. To gain insights into EBV membrane oncoprotein effects on B-cell growth, survival and pathogenesis in vivo, we generated transgenic mouse models, in which knock-in mice transgenically express control GFP or EBV latent membrane proteins (LMP) 1 and 2A under the control of the AICDA promoter. Upon T and NK-cell depletion by antibody cocktail, LMP1 and 2A co-expression drove explosive growth of plasmablastic lymphoma-like cells, which proliferated in the spleen, caused severe end-organ damage and death. RNAseq profiling identified genome-wide LMP1 and 2A effects on B-cell gene expression, including dramatic effects on chemokine and cytokine production. While cells exhibited plasmablast features, LMP1 and 2A co-expression also induced mixed hematopoietic lineage markers, a well described but incompletely understood feature of Hodgkin lymphoma. Collectively, our results identify synergistic effects of EBV membrane oncoprotein expression, and highlight their role in lymphoproliferative diseases of immunocompromised hosts.
Project description:In order to identify GATA-3 target genes in T-cell lymphoproliferative neoplasms, we performed GATA-3 ChIP-seq on 3 cutaneous T-cell lymphoma (CTCL) and 4 T-cell acute lymphoblastic leukemia (T-ALL). We have also established cell lines in which GATA-3 was knocked down by shRNA.
Project description:In order to identify GATA-3 target genes in T-cell lymphoproliferative neoplasms, we performed GATA-3 ChIP-seq on 3 cutaneous T-cell lymphoma (CTCL) and 4 T-cell acute lymphoblastic leukemia (T-ALL). We have also established cell lines in which GATA-3 was knocked down by shRNA.
Project description:Cutaneous CD30+ lymphoproliferative disorder (CD30+LPDs), including lymphomatoid papulosis (LyP) and primary cutaneous anaplastic large-cell lymphoma (PCALCL), comprises the second most common group of cutaneous T cell lymphoma. Previously, we reported that special AT-rich sequence-binding protein1 (SATB1), a thymocyte specific chromatin organizer, was over-expressed and promoted malignant T-cell proliferation in a portion of CD30+LPDs, whereas other CD30+LPDs didn't express SATB1 at all. To elucidate the underlying molecular events in CD30+LPDs with differential SATB1 expression, we subjected 4 SATB1+ and 3 SATB1- CD30+LPDs skin biopsies to second-generation RNA-sequencing (RNA-seq). These data provide a significant resource for studies of CD30+LPDs.
Project description:This study is for patients with lymphoproliferative malignancies that have progressed after receiving a previous treatment (relapsed) or are no longer responding to treatment (refractory). To be in this study, patients must have certain types of Hodgkin’s lymphoma (HL), peripheral T-cell lymphoma (PTCL), or B-cell lymphoma, including Waldenstrom’s macroglobulinemia.
This study is being done to find doses of the combination of pralatrexate and gemcitabine with vitamin B12 and folic acid that can be safely given to patients with these types of lymphoma and explore the effectiveness of the treatment.