Project description:Balance between maternal and paternal genomes within the triploid endosperm is necessary for normal seed development. The majority of endosperm genes are expressed in a 2:1 maternal:paternal ratio, reflecting genomic DNA content. Here we find that the 2:1 transcriptional ratio is, unexpectedly, actively regulated. In A. thaliana and A. lyrata, endosperm 24 nt small RNAs are reduced in TEs and enriched in genes compared to the embryo. We find an inverse relationship between the parent-of-origin of sRNAs and mRNAs, with genes more likely to be associated with maternally than paternally biased sRNAs. Disruption of the Pol IV sRNA pathway causes a shift toward maternal allele mRNA expression for many genes. Furthermore, paternal inheritance of an RNA Pol IV mutation is sufficient to rescue seed abortion caused by excess paternal genome dosage. Thus, RNA Pol IV mediates transcriptional balance between maternally and paternally inherited genomes in endosperm.
Project description:Balance between maternal and paternal genomes within the triploid endosperm is necessary for normal seed development. The majority of endosperm genes are expressed in a 2:1 maternal:paternal ratio, reflecting genomic DNA content. Here we find that the 2:1 transcriptional ratio is, unexpectedly, actively regulated. In A. thaliana and A. lyrata, endosperm 24 nt small RNAs are reduced in TEs and enriched in genes compared to the embryo. We find an inverse relationship between the parent-of-origin of sRNAs and mRNAs, with genes more likely to be associated with maternally than paternally biased sRNAs. Disruption of the Pol IV sRNA pathway causes a shift toward maternal allele mRNA expression for many genes. Furthermore, paternal inheritance of an RNA Pol IV mutation is sufficient to rescue seed abortion caused by excess paternal genome dosage. Thus, RNA Pol IV mediates transcriptional balance between maternally and paternally inherited genomes in endosperm.
Project description:These arrays were done in a study to probe Y-by-parent-of-origin effects on gene expression across two geographically diverse (Ohio, USA and Republic of Congo, Africa) Y-chromosome lineages (Cs or Con), and two modes of Y chromosome transmission (paternally or maternally). Males harbor one of two Y chromosomes extracted from natural populations. Y chromosomes are inherited maternally or paternally. Therefore, 4 nodes in the design matrix. Each node was competitively hybridized to each of the other three nodes in 2 dual-channel arrays, dye-swapped.
Project description:Imprinted genes are monoallelically expressed according to parental inheritance. The maternally and paternally inherited alleles are distinguished epigenetically by DNA methylation and histone modifications. Chromosome-wide Chromatin immunoprecipitation (ChIP) and MIRA analysis of MatDup.dist7 and PatDup.dist7 MEFs provided a panoramic map of reciprocal allele-specific histone modifications and DNA methylation at imprinted genes along distal chromosome 7 and 15.
Project description:Imprinted genes are monoallelically expressed according to parental inheritance. The maternally and paternally inherited alleles are distinguished epigenetically by DNA methylation and histone modifications. Chromosome-wide Chromatin immunoprecipitation (ChIP) and MIRA analysis of MatDup.dist7 and PatDup.dist7 MEFs provided a panoramic map of reciprocal allele-specific histone modifications and DNA methylation at imprinted genes along distal chromosome 7 and 15.
Project description:Imprinted genes are monoallelically expressed according to parental inheritance. The maternally and paternally inherited alleles are distinguished epigenetically by DNA methylation and histone modifications. Chromosome-wide Chromatin immunoprecipitation (ChIP) and MIRA analysis of MatDup.dist7 and PatDup.dist7 MEFs provided a panoramic map of reciprocal allele-specific histone modifications and DNA methylation at imprinted genes along distal chromosome 7 and 15.
Project description:The E3 ubiquitin ligase Ube3a is biallelically expressed in mitotic cells, including neural progenitors and glial cells, raising the possibility that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent-of-origin. To test this possibility, we engineered a mouse line that harbors an autism-linked UBE3A-T485A (T508A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We found that both paternally and maternally expressed UBE3A-T485A resulted in elevated UBE3A activity in neural progenitors and glial cells where Ube3a is biallelically expressed. Expression of UBE3A-T485A from the maternal allele, but not the paternal one, led to a persistent elevation of UBE3A activity in postmitotic neurons. Maternal, paternal, or biparental inheritance of the mutant allele promoted embryonic expansion of Zcchc12 lineage interneurons which mature into Sst and Calb2 expressing interneurons, and caused a spectrum of behavioral phenotypes that differed by parent-of-origin. Phenotypes were distinct from those observed in Angelman syndrome model mice that harbor a Ube3a maternal loss-of-function allele. Our study shows that the UBE3A-T485A gain-of-function mutation causes distinct neurodevelopmental phenotypes when inherited maternally or paternally. These findings have clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Project description:The E3 ubiquitin ligase Ube3a is biallelically expressed in mitotic cells, including neural progenitors and glial cells, raising the possibility that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent-of-origin. To test this possibility, we engineered a mouse line that harbors an autism-linked UBE3A-T485A (T508A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We found that both paternally and maternally expressed UBE3A-T485A resulted in elevated UBE3A activity in neural progenitors and glial cells where Ube3a is biallelically expressed. Expression of UBE3A-T485A from the maternal allele, but not the paternal one, led to a persistent elevation of UBE3A activity in postmitotic neurons. Maternal, paternal, or biparental inheritance of the mutant allele promoted embryonic expansion of Zcchc12 lineage interneurons which mature into Sst and Calb2 expressing interneurons, and caused a spectrum of behavioral phenotypes that differed by parent-of-origin. Phenotypes were distinct from those observed in Angelman syndrome model mice that harbor a Ube3a maternal loss-of-function allele. Our study shows that the UBE3A-T485A gain-of-function mutation causes distinct neurodevelopmental phenotypes when inherited maternally or paternally. These findings have clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Project description:DNA methylation patterning is a consequence of opposing activities of DNA methyltransferases and DNA demethylases. In many species, reproduction is a period of significant epigenome lability. In flowering plants, two distinct female gametes, the egg cell and the central cell, are fertilized, producing the embryo and the endosperm, respectively, of the seed. The endosperm is an unusual tissue, exemplified by triploidy and reduced DNA methylation. In Arabidopsis thaliana, a 5-methylcytosine DNA glycosylase, DME, demethylates regions in the central cell genome, leading to methylation differences between maternally- and paternally-inherited endosperm genomes after fertilization. Expression of DME in the central cell is required for gene imprinting, or parent-of-origin specific gene expression, in endosperm. DME is part of a four member gene family in Arabidopsis that includes ROS1, DML2 and DML3. It is unknown whether any of the other DNA glycosylases are required for endosperm methylation patterning. Using whole-genome methylation profiling, we identify ROS1 target regions in the endosperm. We show that ROS1 prevents hypermethylation of paternally-inherited alleles in the endosperm at regions that lack maternal or paternal-allele methylation in wild-type. Thus, ROS1 promotes epigenetic symmetry between parental genomes in the endosperm by preventing paternal genome hypermethylation. We propose that ROS1 and DME act in a parent-of-origin-specific manner at shared endosperm targets, and consider possible implications for the evolution of imprinting mechanisms.