Project description:Chemical analysis of the compounds present in sediment, although informative, often is not indicative of the downstream biological effects that these contaminants exert on resident aquatic organisms. More direct molecular methods are needed to determine if marine life is affected by exposure to sediments. In this study, we used an aquatic multispecies microarray and q-PCR to investigate the effects on gene expression in juvenile sea bream (Sparus aurata) of two contaminated sediments defined as sediment 1 and 2 respectively, from marine areas in Northern Italy.
Project description:Geobacteraceae transfer electrons from a donor such as acetate to an electron acceptor such as Fe(III) or U(VI). Geobacter uraniireducens is found in uranium-contaminated sites and plays an important role in in situ bioremediation. In this experiment, gene expression was compared between G. uraniireducens cultures grown in sediments from a uranium contaminated site amended with acetate and cultures grown in acetate/fumarate medium. Keywords: two-condition comparison
Project description:In recent years, sediments from cave environments have provided invaluable insights into ancient hominids, as well as past fauna and flora. Unfortunately, locations with favourable conditions for ancient DNA (aDNA) preservation in sediments are scarce. In this study we analysed a set of samples obtained from sediments adhered to different human skeletal elements, originating from Neolithic to Medieval sites in England, and performed metagenomics and metaproteomics analysis. From them, we were able to reconstruct a partial human genome. The genetic profile of those human sequences matches the one recovered from the original skeletal element. Additionally, aDNA sequences matching the genomes of endogenous gut and oral microbiome bacteria were identified. We also found the presence of genetic sequences corresponding to animals and plants. In particular we managed to retrieve the partial genome and proteome of a Black Rat (Rattus rattus), sharing close genetic affinities to other medieval Rattus rattus. Our results demonstrate that material usually discarded, as it is sediments adhering to human remains, can be used to get a glimpse of the environmental conditions at the time of the death of an individual.