Project description:This SuperSeries is composed of the following subset Series: GSE22497: Transcriptome analysis of Geobacter sulfurreducens under multiple growth conditions GSE22503: ChIP-chip of Geobacter sulfurreducens PCA with antibody against RNAP and RpoD under various conditions GSE22511: Genome-wide transcription start site determination of Geobacter sulfurreducens under multiple growth conditions Refer to individual Series
Project description:This SuperSeries is composed of the following subset Series: GSE17834: Transcriptome analysis of Geobacter sulfurreducens grown with different nitrogen sources GSE17837: ChIP-chip of Geobacter sulfurreducens PCA with antibody against RpoN under various conditions. Refer to individual Series
Project description:Wild type G. sulfurreducens DL1 strain (see Caccavo, F., Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752-9. see also Coppi, M. V., C. Leang, S. J. Sandler, and D. R. Lovley. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180-7.) and DLCN16 mutant (.rpoS::Km) (see Nuñez, C., L. Adams, S. Childers, and D. R. Lovley. 2004. The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. J Bacteriol 186:5543-6.) were grown under anaerobic conditions at 30 °C in continuous culture with a 200 ml working volume as previously described (see Esteve-Nunez, A., M. Rothermich, M. Sharma, and D. Lovley. 2005. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ Microbiol 7:641-8.). Cells were cultured at a growth rate of 0.05 h-1, steady-state cell growth was obtained after 5 volume refills and was confirmed by a constant cell density and concentrations of Fe(II). Acetate (5.5 mM) was the electron donor and the limiting substrate. The electron acceptor was Fe(III)-citrate (60mM). Two biological replicates of control and treatment cells were obtained to produce hybridizations for this experiment.
Project description:Wild type G. sulfurreducens DL1 strain (see Caccavo, F., Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752-9. see also Coppi, M. V., C. Leang, S. J. Sandler, and D. R. Lovley. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180-7.) and DLCN16 mutant (.rpoS::Km) (see Nuñez, C., L. Adams, S. Childers, and D. R. Lovley. 2004. The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. J Bacteriol 186:5543-6.) were grown under anaerobic conditions at 30 °C in continuous culture with a 200 ml working volume as previously described (see Esteve-Nunez, A., M. Rothermich, M. Sharma, and D. Lovley. 2005. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ Microbiol 7:641-8.). Cells were cultured at a growth rate of 0.05 h-1, steady-state cell growth was obtained after 5 volume refills and was confirmed by a constant cell density and concentrations of fumarate and succinate. Acetate (5.5 mM) was the electron donor and the limiting substrate. The electron acceptor was fumarate (30mM). Three biological replicates of control and treatment cells were obtained to produce hybridizations for this experiment.
Project description:Geobacter sulfurreducens PCA was put under selective pressure for rapid Fe(III) oxide reduction. The resultant strain, V1, contained five confirmed mutations and reduced Fe(III) oxide 17 times faster. Whole genome DNA microarray analysis was performed in order to determine which genes are up- or down-regulated in V1 compared to PCA, both grown with ferric citrate as an electron acceptor.