Project description:This study was undertaken to investigate the anticancer effects of organic extracts derived from the floral cones of Metasequoia glyptostroboides. Dried powder of M. glyptostroboides floral cones was subjected to methanol extraction, and the resulting extract was further partitioned by liquid-liquid extraction using the organic solvents n-hexane, dichloromethane (DME), chloroform, and ethyl acetate in addition to deionized water. HeLa cervical and COS-7 cells were used as a cancer cell model and normal cell control, respectively. The anticancer effect was evaluated by using the Cell Counting Kit-8 assay. The viability of COS-7 cells was found to be 12-fold higher than that of the HeLa cells under the administration of 50 µg/ml of the DME extract. Further, the sub-G1 population was determined by FACS analysis. The number of cells at the sub-G1 phase, which indicates apoptotic cells, was increased approximately fourfold upon treatment with the DME and CE extracts compared with that in the negative control. Furthermore, RT-qPCR and western blotting were used to quantitate the relative RNA and protein levels of the cell death pathway components, respectively. Our results suggest that the extracts of M. glyptostroboides floral cones, especially the DME extract, which possesses several anticancer components, as determined by GC-MS analysis, could a potential natural anticancer agent.
Project description:IntroductionNitrogen (N) and phosphorus (P) enrichment due to anthropogenic activities can significantly affect soil N transformations in forest ecosystems. However, the effects of N and P additions on nitrification and denitrification processes in Metasequoia glyptostroboides plantations, and economically important forest type in China, remain poorly understood.MethodsThis study investigated the responses of soil nitrification and denitrification rates, as well as the abundances of nitrifiers and denitrifiers, to different levels of N and P additions in a 6-year nutrient addition experiment in a M. glyptostroboides plantation.ResultsStepwise multiple regression analysis was used to identify the main predictors of nitrification and denitrification rates. The results showed that moderate N addition (N2 treatment, 2.4 mol·m-2) stimulated nitrification rates and abundances of ammonia-oxidizing archaea (AOA) and bacteria (AOB), while excessive N and P additions inhibited denitrification rates and reduced the abundance of nirS-type denitrifiers. AOB abundance was the main predictor of nitrification rates under N additions, whereas microbial biomass carbon and nirS gene abundance were the key factors controlling denitrification rates. Under P additions, tree growth parameters (diameter at breast height and crown base height) and AOB abundance were the primary predictors of nitrification and denitrification rates.DiscussionOur study reveals complex interactions among nutrient inputs, plant growth, soil properties, and microbial communities in regulating soil N transformations in plantation forests. This study also offers valuable insights for formulating effective nutrient management strategies to enhance the growth and health of M. glyptostroboides plantations under scenarios of increasing elevated nutrient deposition.
| S-EPMC11384580 | biostudies-literature
Project description:RNA-Seq of Metasequoia glyptostroboides roots
| PRJNA1233675 | ENA
Project description:Adventitious root formation of Metasequoia glyptostroboides
Project description:Metasequoia glyptostroboides is an endangered relict conifer species endemic to China. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed using transcriptome mining for future genetic and functional studies. We collected 97,565 unigene sequences generated by 454 pyrosequencing. A bioinformatics analysis identified 2087 unique and putative microsatellites, from which 96 novel microsatellite markers were developed. Fifty-three of the 96 primer sets successfully amplified clear fragments of the expected sizes; 23 of those loci were polymorphic. The number of alleles per locus ranged from two to eight, with an average of three, and the observed and expected heterozygosity values ranged from 0 to 1.0 and 0.117 to 0.813, respectively. These microsatellite loci will enrich the genetic resources to develop functional studies and conservation strategies for this endangered relict species.