Project description:Geobacteraceae transfer electrons from a donor such as acetate to an electron acceptor such as Fe(III) or U(VI). Geobacter uraniireducens is found in uranium-contaminated sites and plays an important role in in situ bioremediation. In this experiment, gene expression was compared between G. uraniireducens cultures grown in sediments from a uranium contaminated site amended with acetate and cultures grown in acetate/fumarate medium. Keywords: two-condition comparison
Project description:Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the alpha, beta, delta, and gamma subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-reducing delta-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the delta-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment.
Project description:Uranium is metal that appears more and more as a soil contaminant, on the one hand because of the increased extraction of uranium worldwide for nuclear energy production, and on the other hand as a contaminant of phosphate fertilizers. Uranium is known to alter plant physiology, but the molecular actors implied in these alterations, i.e. the uranium-binding proteins, are poorly known up to now. In order to improve our knowledge on this topic, a 2D gel-based approach relying on protein correlation profiling was used. To this purpose, Arabidopsis thaliana cells were cultivated under photosynthetic conditions until a sufficient number of cells was reached. The cells were then rinsed and exposed to 50µM uranyl nitrate in a Murashige and Skoog medium deprived of phosphate or containing 30µM phosphate. The cells were then washed with 10mM sodium carbonate, twice with distilled water and kept frozen until use.
Project description:Thermoacidophilic archaea are found in heavy metal-rich environments and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium. M. prunae, isolated from a smoldering heap on a uranium mine in Thuringen, Germany, could be viewed as a M-bM-^@M-^\spontaneous mutantM-bM-^@M-^] of M. sedula, an isolate from Pisciarelli solfatara near Naples, Italy. M. prunae tolerated U3O8 and U(VI) to a much greater extent than M. sedula. Within 15 minutes following exposure to M-bM-^@M-^\U(VI) shockM-bM-^@M-^], M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 minutes post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA. This suggested that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 minutes post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U3O8 to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U3O8 to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors. The study comprises 9 Samples, described in detail below. MprAU_MseAU: Transcriptional analysis of the response of Metallosphaera prunae (Mpr) and Metallosphaera sedula(Mse) to chemolithoautotrophic conditions (0.1 wt% Uranium octaoxide with CO2 supplementation in headspace). This experiment was done to identify the key terminal oxidases which responded to a Uranium oxide while doing inter-species comparison between Mpr and Mse. Transcriptional response of the terminal oxidase clusters proved that certain key genes play a role in the vastly different physiologies of these two species. MprN_MprU60: Transcriptional analysis of the response of Metallosphaera prunae (Mpr) to 60 min of Uranium shock. This experiment was done to analyze the differential transcription of Mpr cells challenged with 1 mM uranyl acetate shock (U shock) compared to normal growth. The Uranium cultures were harvested 60 min after the shock. MprN_MseN: Differential transcription of Metallosphaera species under normal growth conditions. This experiment was done to analyze the differential transcription of Mpr cells compared with Mse cells at mid log phase. MprN_MprU3h: Transcriptional response of Metallosphaera prunae (Mpr) to 3h of Uranium shock compared to normal growth. This experiment was done to analyze the differential transcription of Mpr cells challenged with 1 mM uranyl acetate shock (U shock) . The Uranium cultures were harvested 3 h after the shock. MseN_MseU15: Transcriptional response of Metallosphaera sedula (Mse) to 15 min of Uranium shock. This experiment was done to analyze the differential transcription of Mse cells challenged with 1 mM uranyl acetate shock (U shock) compared to normal growth. The Uranium cultures were harvested 15 min after the shock. MseN_MseU60: Transcriptional response of Metallosphaera sedula to 60 min of Uranium shock. Mse cells were grown upto mid log phase after which the cells were subjected to U shock and harvested 60 min later. Biological repeats were done for both experimental conditions. MseN_MseU3h: Transcriptional response of Metallosphaera sedula (Mse) to 3h of Uranium shock compared to normal growth. This experiment was done to analyze the differential transcription of Mse cells challenged with 1 mM uranyl acetate shock (U shock) . The Uranium cultures were harvested 3 h after the shock. MseU15_MseU60: Transcriptional response of Metallosphaera sedula to 15 min of Uranium shock compared with 60 min of Uranium shock. This experiment was done to analyze the differential transcription of Mse cells challenged with 1 mM uranyl acetate shock (U shock) . The Uranium cultures were harvested 15 min and 60 min after the shock. MprU3h_MseU3h: Differential transcription of Metallosphaera cells under Uranium shock. This experiment was done to analyze the differential transcription of Metallosphaera sedula (Mse) and Metallosphaera prunae (Mpr) challenged with 1 mM uranyl acetate.
Project description:Genome sequences for three strains of denitrifying bacteria (Alphaproteobacteria-Afipia sp. strain 1NLS2 and Hyphomicrobium denitrificans strain 1NES1; Firmicutes-Bacillus sp. strain 1NLA3E) isolated from the nitrate- and uranium-contaminated subsurface of the Oak Ridge Integrated Field Research Challenge (ORIFRC) site, Oak Ridge Reservation, TN, are reported.
Project description:bra-inra09-02_bioen_nitrogen - nitrate induction - nlp mutants - Short term nitrate induction kinetics in wildtype, nlp7-1, nlp7-3 and nlp6nlp7 - 10 days old seedling grown in liquid culture on 3mM nitrate wer starvec for N for 3 days and the kinetic for the resupply of nitrate was studied during a short kinetic (0,5, 10,20 minutes).
Project description:ngs2018_11_nlp2-no treatment / nitrate starvation / nitrate induction-Is NLP2 involved in the PNR Nitrate starvation and nitrate induction effects on wild type and mutant nlp2
Project description:The purpose of this study is to determine whether dietary nitrate supplementation improves performance in cardiopulmonary exercise testing (CPET).
Project description:This dataset describe the transcriptomic profiling of adult brain, gonades (testis and ovaries) of adult zebrafish exposed to 20µg/L of depleted uranium for 10 days. The progeny of the exposed fishes were also analysed at two-cells stage and 96 hours post fertilization