Project description:Endophytic fungi are root-inhabiting fungi that can promote plant growth in a variety of ways. They can directly stimulate plant growth by producing phytohormones, such as auxin and gibberellins. They can also indirectly promote plant growth by helping plants to acquire nutrients, such as nitrogen and phosphorus, and by protecting plants from pests and pathogens.In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, nutrient acquisition, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.
Project description:Fungal necromass in soil represents the stable carbon pools. While fungi are known to decompose fungal necromass, how fungi decomopose melanin, remains poorly understood. Recently, Trichoderma species was found to be one of the most commonly associated fungi in soil, we have used a relevant fungal species, Trichoderma reesei, to characterized Genes involved in the decomposition of melanized and non-melanized necromass from Hyaloscypha bicolor.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and of two beneficial, and neutral soil bacteria during their interactions in vitro.
2014-06-12 | GSE53608 | GEO
Project description:Soil phosphorus impacts on arbuscular mycorrhizal fungi
Project description:Rhizosphere is a complex system of interactions between plant roots, bacteria, fungi and animals, where the release of plant root exudates stimulates bacterial density and diversity. However, the majority of the bacteria in soil results to be unculturable but active. The aim of the present work was to characterize the microbial community associated to the root of V. vinifera cv. Pinot Noir not only under a taxonomic perspective, but also under a functional point of view, using a metaproteome approach. Our results underlined the difference between the metagenomic and metaproteomic approach and the large potentiality of proteomics in describing the environmental bacterial community and its activity. In fact, by this approach, that allows to investigate the mechanisms occurring in the rhizosphere, we showed that bacteria belonging to Streptomyces, Bacillus and Pseudomonas genera are the most active in protein expression. In the rhizosphere, the identified genera were involved mainly in phosphorus and nitrogen soil metabolism.
Project description:Phosphorus (P) limitation will play a key role in the productivity of agriculture in the coming decades. Struvite is an ammonium magnesium phosphate mineral that can be recovered from wastewater-treatment plants and can be considered as an alternative source of P. However, the impact of struvite on the plant yield and, particularly, on the soil microbial community is barely known. Here, we tested the impacts of struvite, sewage sludge, and their combination on the barley yield, soil macro and micronutrients, and biochemical and microbiological soil properties. Amendment with struvite alone and its combination with sludge increased the availability of P in soil, the plant uptake of P and Mg, and the barley yield. The analysis of phospholipid fatty acids (PLFAs) and metaproteomics approaches revealed significant effects of struvite on the biomass of Gram-positive bacteria and, particularly, on actinobacterial populations in soil.
Project description:The rapid expansion of fast-growing plantations in subtropical regions is closely linked to dry-season irrigation and fertilization; however, improper practices often lead to soil acidification and reduced nutrient bioavailability. Phosphorus (P), one of the most critical elements for plantation tree growth, shows complex spatial distribution patterns in soil that are influenced by multiple factors, directly affecting plantation productivity. This study investigated the effects of long-term fertilization and dry-season irrigation on the vertical distribution of phosphorus in an 8-year-old subtropical Eucalyptus plantation. This study employed stratified sampling (0–30 cm topsoil, 30–60 cm subsoil, 60–90 cm substratum) during dry seasons, coupled with metagenomics, metabolomics, and environmental factor analysis, to reveal vertical phosphorus cycling patterns and multiomics regulatory networks. Key findings: (1) Fertilization and dry-season irrigation had a limited influence on labile phosphorus and the diversity of P-cycling microorganisms. The topsoil presented significantly greater P availability than did the subsoil, manifested as elevated acid phosphatase activity (ACP), significant enrichment of the tryptophan metabolic pathway, and greater microbial diversity. (2) pH and the C:P ratio represent critical factors of vertical stratification in soil P cycling. Under acidic conditions, topsoil microorganisms facilitate P release via diverse metabolic pathways, whereas oligotrophic constraints in the substratum limit enzymatic activities. (3) We believe that potential cross-stratum microbial functional coordination exists in acidic soil P cycling, with linkages to tryptophan metabolism and polyP synthesis/degradation. Our study provides theoretical multiomics insights for optimizing the management of soil P pools in subtropical plantations under fertilization and dry-season irrigation.