Project description:We conducted a culture experiment by deeply submerging plants in swine wastewater in culturing Iris tectorum and co-culturing Iris tectorum and Dictyosphaerium sp., and found that the plants grew sub-normal in the plant-microalgae co-culture while the plants were dead after 21 days in the plant culture. We generated a comprehensive RNA-seq dataset from the submerged Iris tectorum leaves in both the plant culture and the plant-microalgae co-culture, aiming at providing information on the response mechanisms of the plants to waterlogging stress. Besides raw reads of the RNA-seq dataset, we used DEseq2 algorithms to detect the differently expressed genes in the plants between the different cultures. Additionally, we performed the plant disease resistance gene analysis for all the differentially expressed genes.
Project description:Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome (TB-IRIS) is a common complication in HIV-TB co-infected patients receiving combined antiretroviral therapy (cART). While monocytes/macrophages play major roles in both HIV- and TB-infection individually, a putative contribution of monocytes to the development of TB-IRIS remains unexamined. We performed a genome-wide array analysis on MOs purified from peripheral blood mononuclear cells (PBMCs) obtained before initiation of combined antiretroviral therapy (cART) to verify whether the transcriptome of MOs was already significantly modulated (even before receiving cART) in HIV+/TB+ patients who later developed TB-IRIS compared to control HIV+/TB+ patients who did not develop the complication . The subjects under study included a subset of 18 TB-IRIS patients and controls matched for age, gender and CD4 count.
Project description:Here, we have developed a novel methodology called IRIS (Imaging Reconstruction using Indexed Sequencing) that enables cost-effective spatial transcriptomics profiling without relying on optical imaging. Through neighborhood interaction-based reconstruction, IRIS allows extensive analysis of large tissue sections and many replicates with adjustable mapping resolution at only a fraction of the cost of other commercial platforms. With the IRIS platform, we reconstructed a large area spatial area with two whole mouse brain coronal sections. Moreover, we also created a spatially resolved transcriptome atlas of the mouse brain and identified aging-associated changes in gene expression and spatial organization across various brain cell types. Further analysis of cell-cell interaction changes identified aging-associated foci in white matter regions enriched with inflammatory subtypes of microglia and oligodendrocytes. Overall, the IRIS methodology cost-effective and ease-of-use approach makes it broadly applicable to the studies of spatial gene expression changes in various systems.
Project description:Transcriptome sequencing of non-model organisms is valuable resource of the genetic basis of ecological-meaningful traits. The Royal Irises, Iris section Oncocyclus (Iris: Iridaceae, order Asparagales), are a Middle-East group of species in the course of speciation. The species are characterized with extremely large flowers, a huge range of flower colors and a unique pollination system. The Royal Irises, which are a symbol of conservation in the Middle-east, serve as a model for evolutionary processes of speciation and plant ecology. However, there are not sufficient transcriptomic and genomic data for molecular characterization. Thus, it is necessary to generate massive transcript sequences for functional characterization and molecular marker development for the Royal Irises. The Iris transcriptome sequencing provides valuable resource for studying adaptation-associated traits in this non-model plant. Although intensive eco-evolutionary studies, this is the first reported transcriptome for the Royal Irises. The data available from this study will facilitate gene discovery, functional genomic studies and development of molecular markers in irises, and will provide genetic tools for their conservation.