Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:Tissue-specific methylation patterns suggest a role for CpG island methylation in differentiation and cell-type-specific gene regulation. We have profiled CpG island methylation in different cells of the immune cell lineage to investigate this role. MBD-affinity purification combined with next generation sequencing was used to analyse CpG island methylation in dendritic cells, B cells, Th1, Th2 and naïve T cells. ChIP-seq was carried out to determine RNA polymerase II binding sites in these cell types and this was compared to the methylation profiles obtained. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/ Abstract: We have profiled CpG island methylation in various immune system cell types and related this to gene expression in these cells.
Project description:Xylella fastidiosa (Xf) is a Gram-negative bacterial plant pathogen responsible for severe diseases in a variety of economically important crops. A critical aspect of its virulence is the production of extracellular vesicles (EVs). In this study, we discovered that DNA-binding proteins and non-ribosomal RNA-binding proteins are abundant in the corona of Xf-EVs. DNA-seq revealed enrichment of three genomic islands (GIS) in EVs, which carry molecular signatures indicative of horizontal gene transfer (HGT). The most abundant GI encodes five homologous small RNAs designated sXFs. RNA sequencing revealed a distinct pattern of non-coding RNAs enriched in EVs, including four island-encoded sXFs. One of the sXF’s stem-loops contains motifs for binding the RNA chaperone Hfq, which is also abundant in EVs. Predicted target analysis suggests that sXFs play a role in regulation of natural competence in bacteria. Additionally, sXF plant target prediction identifies a coiled-coil nucleotide-binding domain leucine-rich repeat receptor (CNL) immune gene that is downregulated following Xf infection and Xf-EV treatment. We propose a model where Xf releases nucleic acid carrying EVs with two functions: one to deliver RNA-related cargo that regulates gene expression in both bacterial and plant cells, and another to deliver DNA-related cargo for the genetic transfer of genomic islands. We highlight island-encoded sXFs as potential virulence factors and vesiduction as a mechanism of horizontal gene transfer of sXFs in Xf. Taken together, our data on Xf-EV cargoes provide a molecular framework for understanding the virulence of Xf.
2025-05-27 | PXD056167 | Pride
Project description:Virome analysis of sugarcane using RNA-seq
Project description:Mammals are co-infected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine gammaherpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-g (IFNg) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNg reactivated latent murine gammaherpesvirus infection in vivo, suggesting a âtwo-signalâ model for viral reactivation. Thus chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status. All of the RNA from virus-pos cells and 50 ng of RNA from virus-neg cells was prepared for RNA-seq using ScriptSeq v2 RNA-seq library preparation kit (Epicentre). Index Primers (Epicentre) were added and samples underwent Duplex-Specific thermostable nuclease (DSN) (Evrogen) treatment to remove ribosomal RNA. Samples were pooled and sequenced on HiSeq.
Project description:We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. We also report that MBD2 binds to a subset of CpG island promoters that are characterized by the presence of active histone marks and RNA polymerase II (Pol2). At such sites, MBD2 binds downstream of the transcription start site. Active promoters bound by MBD2 show low to medium gene expression levels and H3K36me3 deposition suggesting a putative role for MBD2 in blocking polymerase II (Pol2) elongation at these promoters. To gain further insight into the function of and epigenetic regulation by MBD2 we generated a tagged version of the protein and stably expressed it in the MCF-7 cell line. We mapped genome wide binding of MBD2 by ChIP sequencing (ChIP-seq) and together with base resolution whole genome bisulfite sequencing (WGBS) we were able to determine the methylation content and the role of methylation density at MBD2 enriched regions. We further dissected MBD2 binding properties, taking advantage of a large set of ChIP-seq data including active histone marks, RNA polymerase II (POL2) and strand specific RNA-seq.