Project description:Meta-proteomics analysis approach in the application of biogas production from anaerobic digestion has many advantages that has not been fully uncovered yet. This study aims to investigate biogas production from a stable 2-stage chicken manure fermentation system in chemical and biological perspective. The diversity and functional protein changes from the 1st stage to 2nd stage is a good indication to expose the differential metabolic processes in anaerobic digestion. The highlight of identified functional proteins explain the causation of accumulated ammonia and carbon sources for methane production. Due to the ammonia stress and nutrient limitation, the hydrogenotrophic methanogenic pathway is adopted as indicative of meta-proteomics data involving the key methanogenic substrates (formate and acetate). Unlike traditional meta-genomic analysis, this study could provide both species names of microorganism and enzymes to directly point the generation pathway of methane and carbon dioxide in investigating biogas production of chicken manure.
Project description:Perennial plants maintain their life span through several growth seasons. Arabis alpina serves as model Brassicaceae species to study perennial traits. A. alpina lateral stems have a proximal vegetative zone with a dormant bud zone, and a distal senescing seed-producing inflorescence zone. We addressed the questions of how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage, and which signals affect the zonation. We found that the vegetative zone ehxibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and sequestration of storage compounds. The inflorescence zone with only primary growth, termed annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application, cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis cytokinin-related genes represented enriched gene ontology terms and were expressed at higher level in PZ than AZ. Thus, A. alpina uses primarily the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.
Project description:Rosa roxburghii pomace and Lactobacillus acidophilus enhances biomass preservation and biogas production of alfalfa during anaerobic storage Genome sequencing and assembly
Project description:Anaerobic degradation (AD) of heterogeneous agricultural substrates is a complex process involving a diverse microbial community. While microbial community composition of a variety of biogas plants (BPs) is well described, little is known about metabolic processes and microbial interaction patterns. Here, we analyzed 16 large-scale BPs using metaproteomics. All metabolic steps of AD were observed in the metaproteome, and multivariate analyses indicated that they were shaped by temperature, pH, volatile fatty acid content and substrate types. Biogas plants can be subdivided into hydrogenotrophic, acetoclastic or a mixture of both methanogenic pathways based on their process parameters, taxonomic and functional metaproteome. Network analyses showed large differences in metabolic and microbial interaction patterns. Both, number of interactions and interaction partners were highly dependent on the prevalent methanogenic pathway for most species. Nevertheless, we observed a highly conserved metabolism of different abundant Pseudomonas spp. for all BPs indicating a key role during AD in carbohydrate hydrolysis irrespectively of variabilities in substrate input and process parameters. Thus, Pseudomonas spp. are of high importance for robust and versatile AD food webs, which highlight a large variety of downstream metabolic processes for their respective methanogenic pathways.
Project description:High-pH and high-alkalinity anaerobic digestion for in-situ biogas upgrading: insights into methane production, biogas purity, and process performance.
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
Project description:Mitigation of N2O-emissions from soils is needed to reduce climate forcing by food production. Inoculating soils with N2O-reducing bacteria would be effective, but costly and impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production may provide a low-cost and widely applicable solution. Firstly, we show that indigenous N2O-reducing bacteria in digestates grow to high levels during anaerobic enrichment under N2O. Gas kinetics and meta-omic analysis show that the N2O respiring organisms, recovered as metagenome-assembled genomes (MAGs) grow by harvesting fermentation intermediates of the methanogenic consortium. Three digestate-derived denitrifying bacteria were obtained through isolation, one of which matched the recovered MAG of a dominant Dechloromonas-affiliated N2O reducer. While the identified N2O-reducers encoded genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O-sinks in the current system. Secondly, moving towards practical application, we show that these isolates grow by aerobic respiration in digestates, and that fertilization with these enriched digestates reduces N2O emissions. This shows that the ongoing implementation of biogas production in agriculture opens a new avenue for cheap and effective reduction of N2O emissions from food production.
Project description:Biogas plants (BGPs) produce methane and carbon dioxide through the anaerobic digestion of agricultural waste. Identification of strategies for more stable biogas plant operation and increased biogas yields require better knowledge about the individual degradation steps and the interactions within the microbial communities. The metaprotein profiles of ten agricultural BGPs and one laboratory reactor were investigated using a metaproteomics pipeline. Fractionation of samples using SDS-PAGE was combined with a high resolution Orbitrap mass spectrometer, metagenome sequences specific for BGPs, and the MetaProteomeAnalyzer software. This enabled us to achieve a high coverage of the metaproteome of the BGP microbial communities. The investigation revealed approx. 17,000 protein groups (metaproteins), covering the majority of the expected metabolic networks of the biogas process such as hydrolysis, transport, fermentation processes, amino acid metabolism, methanogenesis and bacterial C1-metabolism. Biological functions could be linked with the taxonomic composition. Two different types of BGPs were classified by the abundance of the acetoclastic methanogenesis and by abundance of enzymes implicating syntrophic acetate oxidation. Linking of the identified metaproteins with the process steps of the Anaerobic Digestion Model 1 proved the main model assumptions but indicated also some improvements such as considering syntrophic acetate oxidation. Beside the syntrophic interactions, the microbial communities in BGPs are also shaped by competition for substrates and host-phage interactions causing cell lysis. In particular, larger amounts of Bacteriophages for the bacterial families Bacillaceae, Enterobacteriaceae and Clostridiaceae, exceeding the cell number of the Bacteria by approximately four-fold. In contrast, less Bacteriophages were found for Archaea, but more CRISPR proteins were detected. On the one hand, the virus induced turnover of biomass might cause slow degradation of complex biomass in BGP. On the other hand, the lysis of bacterial cells allows cycling of essential nutrients.