Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray
Project description:We seek to determine the effects of foliar endophytes on soybean physiological traits, and their effect on plant responses to elevated carbon dioxide. We are using three dominant endophytes extracted from the SoyFACE facility at UIUC.
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray B. phytofirmans type strain PsJN was originally isolated as a contaminant from surface-sterilized, Glomus vesculiferum-infected onion roots (Nowak et al., 1998), whereas strain P6 RG6-12 was isolated from the rhizosphere of a grassland in the Netherlands (Salles et al., 2006). This strain was selected based on its similarity to strain PsJN based on 16S rRNA gene homology, and similar phenotypic features. Both strains were generally cultivated on King's medium (King et al., 1954). For the mutant AHL to the strain B. phytofirmans PsJN a quorum quenching approach as described by Wopperer et al., 2006 was employed. Plasmid pMLBAD-aiiA, which contains aiiA, the Bacillus sp. 240B1 lactonase gene, was transferred to B. phytofirmans PsJN by triparental mating as described by de Lorenzo and Timmis (1994). 2 cultivars, 3 endophytes
Project description:Nitrogen is the most important mineral nutrient of plant. As a worldwide and economically important vegetable, cucumber (Cucumis sativus L.) has a strong nitrogen-dependence. We took whole transcriptome sequencing approach to compare the gene expression profiles of cucumber leaves and roots grown under sufficient or insufficient nitrate supply. Analysis of the transcriptome data revealed that the root and leaf adapt different response mechanisms to long-term nitrogen deficiency. Photosynthesis and carbohydrate biosynthetic process were pronouncedly and specifically reduced in leaf, while the ion transport function, cell wall and phosphorus-deficiency response function seem systematically down-regulated in root. Genes in nitrogen uptake and assimilation are decreased in root, but some are increased in leaf under nitrogen deficiency. Several lines of evidence suggest that the altered gene expression networks support the basic cucumber growth and development likely through successful nitrogen remobilization involving in the induced expression of genes in ABA and ethylene pathways.