Project description:Plasmids are extrachromosomal genetic elements commonly found in bacteria. Plasmids are known to fuel bacterial evolution through horizontal gene transfer (HGT), but recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond HGT remains poorly explored. In this study, we investigate the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of various multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveil that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded IS1 elements. Specifically, IS1-mediated gene inactivations expedite the adaptation rate of clinical strains in vitro and foster within-patient adaptation in the gut. We decipher the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings propose that plasmid-mediated IS transposition represents a crucial mechanism for swift bacterial adaptation.
Project description:the genetic inactivation of Khk-C enhanced the survival of KPC-driven PDAC model even in absence of high fructose diet. Moreover Khk-C knock out decreased the viability of KPC organoids and cancer cells, the migratory capability of PDAC cells in vitro and the growth of KPC cells in vivo in a cell autonomous manner.
Project description:The Sfh protein is encoded by self-transmissible plasmids involved in human typhoid and is closely related to the global regulator H-NS. We have found that Sfh provides a stealth function that allows the plasmids to be transmitted to new bacterial hosts with minimal effects on their fitness. Introducing the plasmid without the sfh gene imposes a mild H-NS- phenotype and a severe loss of fitness due to titration of the cellular pool of H-NS by the A+T-rich plasmid. This stealth strategy seems to be used widely to aid horizontal DNA transmission and has important implications for bacterial evolution.
2007-01-15 | E-SGRP-7 | biostudies-arrayexpress
Project description:Within-host evolution of KPC-producing Pseudomonas aeruginosa
| PRJNA1003660 | ENA
Project description:Experimental evolution of plasmids in E. coli MG1655
Project description:Pancreatic cancer is among the deadliest cancers that affects almost 54,000 patients in United States alone, with 90% of them succumbing to the disease. Lack of early detection is considered to be the foremost reason for such dismal survival rates. Our study shows that resident gut microbiota is altered at the early stages of tumorigenesis much before development of observable tumors in a spontaneous, genetically engineered mouse model for pancreatic cancer. In the current study, we analyzed the microbiome of in a genetic mouse model for PDAC (KRASG12DTP53R172HPdxCre or KPC) and age-matched controls using WGS at very early time points of tumorigenesis. During these time points, the KPC mice do not show any detectable tumors in their pancreas. Our results show that at these early time points, the histological changes in the pancreas correspond to a significant change in certain gut microbial population. Our predictive metabolomic analysis on the identified bacterial species reveal that the primary microbial metabolites involved in progression and development of PDAC tumors are involved in polyamine metabolism.