Project description:Multifunctional TFs are central in coordinating development and metabolism in filamentous fungi. In this study, we systematically dissect the regulatory functions of NsdD, a highly conserved GATA-type TF in Pezizomycotina, using network-based multi-omics approaches in two distantly related species, A. nidulans and A. flavus. Our analyses reveal that NsdD governs fungal development and metabolism through species-specific GRNs, directly targeting key upstream regulators and genes involved in core cellular processes. These regulatory distinctions underlie the morphological and metabolic differences observed between the two species. Notably, our cross-species comparison uncovers extensive GRN rewiring, demonstrating how evolutionary divergence can reshape transcriptional networks even under conserved regulatory control. The resulting GRN maps offer a valuable framework for understanding gene regulation in Aspergillus and provide a foundation for broader studies on the evolution of transcriptional networks and conserved regulatory factors in filamentous fungi.
Project description:Multifunctional TFs are central in coordinating development and metabolism in filamentous fungi. In this study, we systematically dissect the regulatory functions of NsdD, a highly conserved GATA-type TF in Pezizomycotina, using network-based multi-omics approaches in two distantly related species, A. nidulans and A. flavus. Our analyses reveal that NsdD governs fungal development and metabolism through species-specific GRNs, directly targeting key upstream regulators and genes involved in core cellular processes. These regulatory distinctions underlie the morphological and metabolic differences observed between the two species. Notably, our cross-species comparison uncovers extensive GRN rewiring, demonstrating how evolutionary divergence can reshape transcriptional networks even under conserved regulatory control. The resulting GRN maps offer a valuable framework for understanding gene regulation in Aspergillus and provide a foundation for broader studies on the evolution of transcriptional networks and conserved regulatory factors in filamentous fungi.
Project description:Multifunctional TFs are central in coordinating development and metabolism in filamentous fungi. In this study, we systematically dissect the regulatory functions of NsdD, a highly conserved GATA-type TF in Pezizomycotina, using network-based multi-omics approaches in two distantly related species, A. nidulans and A. flavus. Our analyses reveal that NsdD governs fungal development and metabolism through species-specific GRNs, directly targeting key upstream regulators and genes involved in core cellular processes. These regulatory distinctions underlie the morphological and metabolic differences observed between the two species. Notably, our cross-species comparison uncovers extensive GRN rewiring, demonstrating how evolutionary divergence can reshape transcriptional networks even under conserved regulatory control. The resulting GRN maps offer a valuable framework for understanding gene regulation in Aspergillus and provide a foundation for broader studies on the evolution of transcriptional networks and conserved regulatory factors in filamentous fungi.
Project description:Multifunctional TFs are central in coordinating development and metabolism in filamentous fungi. In this study, we systematically dissect the regulatory functions of NsdD, a highly conserved GATA-type TF in Pezizomycotina, using network-based multi-omics approaches in two distantly related species, A. nidulans and A. flavus. Our analyses reveal that NsdD governs fungal development and metabolism through species-specific GRNs, directly targeting key upstream regulators and genes involved in core cellular processes. These regulatory distinctions underlie the morphological and metabolic differences observed between the two species. Notably, our cross-species comparison uncovers extensive GRN rewiring, demonstrating how evolutionary divergence can reshape transcriptional networks even under conserved regulatory control. The resulting GRN maps offer a valuable framework for understanding gene regulation in Aspergillus and provide a foundation for broader studies on the evolution of transcriptional networks and conserved regulatory factors in filamentous fungi.
Project description:GATA-2 is a master regulator of hematopoiesis which controls expression of multiple genes and is implicated in acute myeloid leukemia (AML). However, the molecular mechanism how GATA-2 deregulation causes leukemogenesis is still unclear. In this study, GATA-2 ChIP-squ analysis was conducted in Kasumi-3 AML cell line to identify GATA-2 target genes which play important roles in the pathogenesis of AML.