Project description:In agroecosystems, a plant-usable form of nitrogen is mainly generated by legume-based biological nitrogen fixation, a process that requires phosphorus (P) as an essential nutrient. To investigate the physiological mechanism whereby phosphorus influences soybean nodule nitrogen fixation, soybean root nodules were exposed to four phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress), 31 mg/L (Normal P), 61 mg/L (High P) then proteome analysis of nodules was conducted to identify phosphorus-associated proteome changes. We found that phosphorus stress-induced ribosomal protein structural changes were associated with altered key root nodule protein synthesis profiles. Importantly, up-regulated expression of peroxidase was observed as an important phosphorus stress-induced nitrogen fixation-associated adaptation that supported two nodule-associated activities: scavenging of reactive oxygen species (ROS) and cell wall growth. In addition, phosphorus transporter (PT) and purple acid phosphatase (PAPs) were up-regulated that regulated phosphorus transport and utilisation to maintain phosphorus balance and nitrogen fixation function in phosphorus-stressed root nodules.
Project description:Phosphorus (P) deficiency is a major limitation for legume crop production. Although overall adaptations of plant roots to P deficiency have been extensively studied, fragmentary information is available in regards to root nodule responses to P deficiency. In this study, genome wide transcriptome analysis was conducted using RNA-seq analysis to investigate molecular mechanisms underlying soybean (Glycine max) nodule adaptation to phosphate (Pi) starvation. Phosphorus deficiency significantly decreased soybean nodule growth and nitrogenase activity. Nodule Pi concentrations declined by 49% in response to P deficiency, but this was well below the 87% and 88% decreases observed in shoots and roots, respectively. Nodule transcript profiling revealed that a total of 2,055 genes exhibited differential expression patterns between Pi sufficient and deficient conditions. A set of DEGs appeared to be involved in maintaining Pi homeostasis in soybean nodules, including 8 Pi transporters (PTs), 8 proteins containing the SYG1/PHO81/XPR1 domain (SPXs), and 16 purple acid phosphatases (PAPs). The results suggest that a complex transcriptional regulatory network participates in soybean nodule adaption to Pi starvation, most notable a Pi signaling pathway specifically involved in maintaining Pi homeostasis in nodules.
2018-11-20 | GSE116593 | GEO
Project description:WGS shotgun sequencing of soybean root nodule communities
Project description:Metabolomics and transcriptomics of Bradyrhizobium diazoefficiens-induced root nodules Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection -time of flight mass spectrometry analysis the metabolome of i) nodules and roots from four different B. diazoefficiens host plants, ii) soybean nodules harvested at different time points during nodule development, and iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by transcriptomics data that was generated for the two mutant strains and were helpful to separate for some examples the respective bacterial and plant contributions to the metabolic profile. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.
Project description:Common bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common bean and soybean in triplicate to the soybean GeneChip. Initial data analysis showed a decreased sensitivity and specificity in common bean cross-species hybridization (CSH) GeneChip data compared to that of soybean. We employed a method that masked putative probes targeting inter-species variable (ISV) regions between common bean and soybean. A masking signal intensity threshold was selected that optimized both sensitivity and specificity. After masking for ISV regions, the number of differentially-expressed genes identified in common bean was increased by about 2.8-fold reflecting increased sensitivity. Quantitative RT-PCR analysis of a total of 20 randomly selected genes and purine-ureides pathway genes demonstrated an increased specificity after masking for ISV regions. We also evaluated masked probe frequency per probe set to gain insight into the sequence divergence pattern between common bean and soybean. The results from this study suggested that transcript profiling in common bean can be done using the soybean GeneChip. However, a significant decrease in sensitivity and specificity can be expected. Problems associated with CSH GeneChip data can be mitigated by masking probes targeting ISV regions. In addition to transcript profiling CSH of the GeneChip in combination with masking probes in the ISV regions can be used for comparative ecological and/or evolutionary genomics studies. We hybridized cRNA purified from nodule, leaf, and root of common bean and soybean in, triplicate, to the soybean GeneChip (18 GeneChip hybridizations = 2 species x 3 organs x 3 replicates).
Project description:Plants and rhizosphere microbes rely closely on each other, with plants supplying carbon to bacteria in root exudates, and bacteria mobilizing soil-bound phosphate for plant nutrition. When the phosphate supply becomes limiting for plant growth, the composition of root exudation changes, affecting rhizosphere microbial communities and microbially-mediated nutrient fluxes. To evaluate how plant phosphate deprivation affects rhizosphere bacteria, Lolium perenne seedlings were root-inoculated with Pseudomonas aeruginosa 7NR, and grown in axenic microcosms under different phosphate regimes (330 uM vs 3-6 uM phosphate). The effect of biological nutrient limitation was examined by DNA microarray studies of rhizobacterial gene expression.
Project description:Legumes perform symbiotic nitrogen fixation through rhizobial bacteroids housed in specialised root nodules. The biochemical process is energy‐intensive and consumes a huge carbon source to generate sufficient reducing power. To maintain the symbiosis, malate is supplied by legume nodules to bacteroids as their major carbon and energy source in return for ammonium ions and nitrogenous compounds. To sustain the carbon supply to bacteroids, nodule cells undergo drastic reorganisation of carbon metabolism. Here, a comprehensive quantitative comparison of the mitochondrial proteomes between root nodules and uninoculated roots was performed using data‐independent acquisition proteomics, revealing the modulations in nodule mitochondrial proteins and pathways in response to carbon reallocation. Corroborated our findings with that from the literature, we believe nodules preferably allocate cytosolic phosphoenolpyruvates towards malate synthesis in lieu of pyruvate synthesis, and nodule mitochondria prefer malate over pyruvate as the primary source of NADH for ATP production. Moreover, the differential regulation of respiratory chain‐associated proteins suggests that nodule mitochondria could enhance the efficiencies of complexes I and IV for ATP synthesis. This study highlighted a quantitative proteomic view of the mitochondrial adaptation in soybean nodules.
2024-07-16 | PXD050301 | Pride
Project description:Soybean root nodule and rhizosphere microbiome
| PRJNA625756 | ENA
Project description:the effect of wheat straw return on the soybean root-associated microbial communities