Project description:Investigation of whole genome gene expression level changes in a Salmonella enterica serovar Typhimurium 14028 delta GidA mutant The mutant described in this study is further analyzed in Shippy, D. C., N. M. Eakley, P. N. Bochsler, and A. A. Fadl. 2011. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog.
Project description:Investigation of whole genome gene expression level changes in a Salmonella enterica serovar Typhimurium 14028 delta GidA mutant The mutant described in this study is further analyzed in Shippy, D. C., N. M. Eakley, P. N. Bochsler, and A. A. Fadl. 2011. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog. A single chip study using three separate cultures of wild-type Salmonella enterica serovar Typhimurium 14028 and three separate cultures of a single mutant, delta GidA Salmonella enterica serovar Typhimurium 14028.
Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:The Salmonella enterica serovar Typhimurium (ST) mutant lacking the msbB gene (ΔmsbB) has been widely studied as a candidate for attenuated bacterial vectors in therapeutic applications. Deletion of msbB results in LPS with under-acylated lipid A, which lowers endotoxicity while maintaining structural integrity. This attenuation has traditionally been attributed to reduced TLR4 activation due to weaker interaction between the modified lipid A and TLR4. In our study, we confirmed that ΔmsbB ST was less lethal than wild-type (WT) ST in a mouse sepsis model. However, this difference persisted even in TLR4- and caspase-11-deficient mice, suggesting that LPS signaling is not the primary determinant of virulence. In vitro, bone marrow–derived macrophages (BMDMs) from TLR4- or caspase-11-deficient mice showed only modest reductions in ST-induced cell death and cytokine production. Importantly, ΔmsbB ST behaved similarly to WT ST in these assays, further indicating that LPS-mediated signaling is not central to the observed attenuation. Additionally, the mutant exhibited increased outer membrane permeability, likely contributing to its heightened antibiotic sensitivity—and reduced motility due to lower flagellin protein levels.