Project description:Potato (Solanum tuberosum L.), as an important food crop on the Qinghai-Tibet Plateau, is prone to low temperature and frost damage during the seedling stage, causing economic losses for farmers. In this study, transcriptome analyses were conducted on the leaves of Atlantic, KY130 and KY140 potato varieties following exposure to cold stress (CS). The genes StPAL(Soltu.Atl.09_2G005110) and StGAD(Soltu.Atl.11_3G000340), suggesting their involvement in the regulation of cold resistance in potato. “Flavonoid-related metabolism,” “lipid metabolism,” “amino acid metabolism,” “carbohydrate metabolism,” “nucleotide metabolism,” and “energy metabolism” might play an important role in the cold resistance of potato. Our results provided novel insights into the molecular mechanisms underlying cold resistance in potato.
Project description:Potato wild relatives (Solanum section Petota) are a source of genetic diversity for improving traits in modern cultivars (S. tuberosum) to meet climate challenges. Potatoes are susceptible to multiple abiotic and biotic stresses and have undergone constant improvement through breeding programs worldwide. The allotetraploid S. acaule Bitter has been used to introgress cold tolerance into potato breeding germplasm. The cold challenged transcriptome of S. acaule was compared with that of autotetraploid S. tuberosum cv. Atlantic, and was found to have fewer differentially expressed genes than the latter. Specifically, subgenome 1 has less downregulated alleles compared to subgenome 2 and S. tuberosum.
Project description:St (common potato) is a freezing sensitive species unable to cold acclimate. The close wild relative Sc is freezing tolerant and able to cold acclimate. Here we compare the cold transcriptome of these two species with different levels of freezing tolerance. We also identify the putative CBF regulons by comparing the transcriptomes of wild type plants with that of 35S::AtCBF3 transgenic lines in both species.
Project description:The potato is susceptible to water stress at all stages of development. We examined four clones of tetraploid potato, Cardinal, Desirée, Clone 37 FB and Mije, from the germplasm bank of the National Institute of Agricultural Research (INIA) in Chile. Water stress was applied by suspending irrigation at the beginning of tuberization. Stomatal conductance, tuber and plant fresh and dry weight was used to categorize water stress tolerance. Cardinal had high susceptibility to water stress. Desirée was less suscepetible than Cardinal and had some characteristics of tolerance. Mije had moderate and Clon 37 FB high tolerance. Differential gene expression in leaves from plants with and without water stress were examined using transcriptome sequencing. Water stress susceptible Cardinal had the fewest differentially expressed genes at 101, compared to Desirée at 1867, Clon 37 FB at 1179 and Mije at 1010. Water stress tolerance was associated with up-regulation of expression of transcription factor genes and genes involved in osmolyte and polyamine biosynthesis. Increased expression of genes encoding late embryogenesis abundant (LEA) and dehydrin proteins along with decreased expression of genes involved in nitrate assimilation and amino acid metabolism were found for clones showing water stress tolerance. The results also show that water deficit was associated with reduced biotic stress responses. Additionally, heat shock protein genes were differentially expressed in all clones except for highly susceptible Cardinal. Together the gene expression study demonstrates variation in the molecular pathways and biological processes in response to water stress contributing to tolerance and susceptibility.