Project description:The imbalance of intestinal flora can affect the immune function and structural integrity of the intestinal barrier, leading to the colonization and reproduction of opportunistic pathogenic bacteria in the intestine to become the dominant flora, eventually inducing enteritis. This study aimed to investigate whether fecal microbiota transplantation (FMT) could improve the gut barrier in Nile tilapia (Oreochromis niloticus). The experiment involved administering normal saline (NS group) and fecal microbiota (FMT group) (from the negative control group (C group)) to tilapia that had been treated with oxytetracycline hydrochloride (OTC) (M group) by gavage. A total of 300 male tilapia (mean body weight 596.65 ± 47.18 g) were used, with 180 of them being fed OTC (120 mg/kg body weight/day) for 7 days to induce intestinal oxidative stress, while the rest served as the control group. After confirmation of mild chronic enteritis, the tilapia were treated in different ways.
Project description:Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is unknown. We investigated the effect of dietary lipid composition on human microbiota in an observational study and combined diet experiments with microbiota transplants to study lipid-microbiota interactions and liver status in mice. In humans, low intake of saturated fatty acids (SFA) was associated with increased microbial diversity independent of fiber intake. In mice, cecum levels of SFA correlated negatively with microbial diversity and were associated with a shift in butyrate and propionate producers. Mice fed poorly absorbed SFA had improved metabolism and liver status. These features were transmitted by microbial transfer. Diets enriched in n-6- and/or n-3-polyunsaturated fatty acids were protective against steatosis but had minor influence on the microbiota. In summary, we find that unabsorbed SFA correlate with microbiota features that may be targeted to decrease liver steatosis.
Project description:Dietary lipids and gut microbiota may both influence adipose tissue physiology. By feeding conventional and germ-free mice high fat diets with different lipid compositon we aimed to investigate how dietary lipids and the gut microbiota interact to influence inflammation and metabolism in the liver