Project description:The Juniper Bark Borer Semanotus bifasciatus belongs to family Colubridae, and is distributed in north China, Japan and the Korean Peninsula. In this study, the total mitochondrial genome of S. bifasciatus was determined using next-generation sequencing. The whole mitogenome is a typical circular DNA molecule of 16,051 bp and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one control region, with a base composition of A 40.8%, G 11.0%, T 32.6%, and C 16.6%. Phylogenetic analysis indicated that Semanotus bifaciatus was the nearest sister to Xylotrechus grayii. The molecular data presented here would be useful for further study of S. bifasciatus.
| S-EPMC7707332 | biostudies-literature
Project description:Whole genome sequencing of Tridentiger bifasciatus
Project description:BackgroundInsect olfactory proteins can transmit chemical signals in the environment that serve as the basis for foraging, mate searching, predator avoidance and oviposition selection. Semanotus bifasciatus is an important destructive borer pest, but its olfactory mechanism is not clear. We identified the chemosensory genes of S. bifasciatus in China, then we conducted a phylogenetic analysis of the olfactory genes of S. bifasciatus and other species. And the expression profiles of odorant binding proteins (OBPs) genes in different tissues and different genders of S. bifasciatus were determined by quantitative real-time PCR for the first time.ResultsA total of 32 OBPs, 8 chemosensory proteins (CSPs), 71 odorant receptors (ORs), 34 gustatory receptors (GRs), 18 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs) were identified. In the tissue expression analysis of OBP genes, 7 OBPs were higher expressed in antennae, among them, SbifOBP2, SbifOBP3, SbifOBP6, SbifOBP7 and SbifOBP20 were female-biased expression, while SbifOBP1 was male-biased expression and SbifOBP22 was no-biased expression in antennae. In addition, the expressed levels of SbifOBP4, SbifOBP12, SbifOBP15, SbifOBP27 and SbifOBP29 were very poor in the antennae, and SbifOBP4 and SbifOBP29 was abundant in the head or legs, and both of them were male-biased expression. While SbifOBP15 was highly expressed only at the end of the abdomen with its expression level in females three times than males. Other OBPs were expressed not only in antennae but also in various tissues.ConclusionWe identified 166 olfactory genes from S. bifasciatus, and classified these genes into groups and predicted their functions by phylogenetic analysis. The majority of OBPs were antenna-biased expressed, which are involved in odor recognition, sex pheromone detection, and/or host plant volatile detection. However, also some OBPs were detected biased expression in the head, legs or end of the abdomen, indicating that they may function in the different physiological processes in S. bifasciatus.
Project description:The shimofuri goby (Tridentiger bifasciatus) is a small and highly adaptable goby, distributed along the coasts of China, the Sea of Japan, and the west coastal and estuarine areas of the Northwest Pacific. Next-generation sequencing was used to generate genome-wide survey data to provide essential characterization of the shimofuri goby genome and for the further mining of genomic information. The genome size of the shimofuri goby was estimated to be approximately 887.60 Mb through K-mer analysis, with a heterozygosity ratio and repeat sequence ratio of 0.47% and 32.60%, respectively. The assembled genome was used to identify microsatellite motifs (Simple Sequence Repeats, SSRs), extract single-copy homologous genes and assemble the mitochondrial genome. A total of 288,730 SSRs were identified. The most frequent SSRs were dinucleotide repeats (with a frequency of 61.15%), followed by trinucleotide (29.87%), tetranucleotide (6.19%), pentanucleotide (1.13%), and hexanucleotide repeats (1.66%). The results of the phylogenetic analysis based on single-copy homologous genes showed that the shimofuri goby and Rhinogobius similis can be clustered into one branch. The shimofuri goby was originally thought to be the same as the chameleon goby (Tridentiger trigonocephalus) due to their close morphological resemblance. However, a complete mitochondrial genome was assembled and the results of the phylogenetic analysis support the inclusion of the shimofuri goby as a separate species. PSMC analysis indicated that the shimofuri goby experienced a bottleneck event during the Pleistocene Glacial Epoch, in which its population size decreased massively, and then it began to recover gradually after the Last Glacial Maximum. This study provides a reference for the further assembly of the complete genome map of the shimofuri goby, and is a valuable genomic resource for the study of its evolutionary biology.
Project description:The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), has been causing massive damage to various fruit and vegetable crops after its arrival in the USA, and more recently in Europe. To provide an alternative control measure to pesticides, the native egg parasitoid Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) was considered as a candidate biological control agent for inundative releases in Europe. In the risk assessment study presented here, all nine heteropteran and 14 out of 19 tested lepidopteran non-target species produced viable A. bifasciatus offspring. The proportion of A. bifasciatus females producing offspring did not differ between non-target and target for 19 out of the 28 non-target species. Larger host eggs corresponded to increased female-biased sex ratio of the offspring as well as an increase in size, particularly for females, with hind tibia lengths varying from 645.5 ± 46 to 1084 ± 28.5 μm. Larger females were also found to have higher offspring production and increased life expectancy. The results of this study confirmed the polyphagous nature of A. bifasciatus and suggest that a number of non-target species, including Lepidoptera of conservation interest, may be attacked in the field. Thus, non-target effects cannot entirely be ruled out, but more information is needed from semi-field and field studies to fully assess potential environmental risks due to inundative releases of this native parasitoid.
| S-EPMC5978841 | biostudies-literature
Project description:Antennal transcriptome analysis of olfactory genes in Semanotus bifasciatus (Cerambycidae: Coleoptera)