Project description:Species from the genus Colletotrichum are the causal agents of anthracnose which contribute to significant losses to the production of commercially grown crops. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, as well as Colletotrichum gloeosporioides, which infects a wide range of fruits and vegetables, were sequenced. A custom microarray was designed for Colletotrichum orbiculare and used to assess gene expression during infection of Nicotiana benthamiana. Gene expression of Colletotrichum orbiculare growing on its host Nicotiana benthamiana was assessed at 24 hours post inoculation, 3 days post inoculation and 7 days post inoculation. Mycelia growing in vitro and ungerminated conidia were used as controls. Three replicates were performed for each time point.
Project description:Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is a major disease affecting walnut production in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance , the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood.The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 fruit bracts and F423 to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14525 DELs were identified, including 10645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides , such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data.The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.
Project description:Anthracnose disease is caused by Colletotrichum gloeosporioides, and is common in leaves of the tea plant Camellia sinensis. MicroRNAs (miRNAs) have been known as key modulators of gene expression in defense responses; however, the role of miRNAs in tea plant during defensive responses to C. gloeosporioides remains unexplored. Six miRNA sequencing data sets and two degradome data sets were generated from C. gloeosporioides-inoculated and control tea leaves. A total of 485 conserved and 761 novel miRNAs were identified. Of those, 239 known and 369 novel miRNAs exhibited significantly differential expression under C. gloeosporioides stress. 1134 and 596 mRNAs were identified as targets of 389 and 299 novel and conserved miRNAs by degradome analysis, respectively. The expression levels of twelve miRNAs and their targets were validated by quantitative real-time PCR. The predicted targets of five interesting miRNAs were further validated through 5'RLM-RACE. Furthermore, Gene Ontology and metabolism pathway analysis revealed that most of the target genes were involved in translation, carbohydrate metabolism and signal transduction pathways. This study enriches the resources of defense-responsive miRNAs and their targets in C. sinensis, and thus, provides novel insights into the miRNA-mediated regulatory mechanisms underlying immunity responses to biotic stress in tea plant.