Project description:Subgroup J avian leukemia is a type of oncology infectious disease caused by Subtype J of avian leukosis virus (ALV-J). It mainly encroaches on bone marrow cells, and metastasizes to liver, kidney, splenic ellipsoids and other organs, leading to myeloid leukosis (ML) and other malignancies, resulting in significant economic losses. microRNA play important roles in oncology infectious diseases. We used miRNA microarray analysis to detail the relationship of aberrant microRNAs and chicken ALV-J leukemia, and to try to find the potential diagnostic and therapeutic target for infections of subtype J of leukemia.
Project description:Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America. To test the hypothesis that strain divergence might be driven by differences between mammalian and avian response to infection, we examine in vitro strain-dependent host responses in a representative avian host, the chicken. Chicken embryonic fibroblasts were cultivated in vitro and infected with different strains of Toxoplasma gondii (Type II = ME49, Type III = CEP); host transcriptional responses were then analyzed at 24 hours post-infection.
Project description:Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America. To test the hypothesis that strain divergence might be driven by differences between mammalian and avian response to infection, we examine in vitro strain-dependent host responses in a representative avian host, the chicken. To identify parasite drivers of strain-dependent host response, QTL mapping was used; analysis revealed a locus on Toxoplasma chromosome VIIb. To determine whether this was the parasite gene ROP16, array analysis was performed on chicken embryonic fibroblasts infected with Type I parasites and ROP16-KO parasites (of a Type I background).
2011-05-27 | GSE29564 | GEO
Project description:Avian Influenza Type A (Subtype H9N2) sequencing
Project description:Reticuloendotheliosis virus (REV) is a type C avian retrovirus; which causes immunosuppression, dwarf syndrome, and lymphoma in infected hosts. In this study, we used tandem mass tag (TMT) labeling and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to characterize protein alterations in chicken bursa of Fabricius, before and after REV infection at 7, 14, 21, and 28 days. Our data showed that 1127, 999, 910 and 1138 differentially expressed proteins were significantly altered at 7, 14, 21, 28 days after REV infection, respectively. Bioinformatics analysis indicated these proteins were mainly participate in are mainly involved with immune responses, energy metabolism, cellular processes, biological regulation, metabolic processes, response to stimuli, and multicellular organismal process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cluster analysis showed that post-infection, proteins were enriched in the cell cycle, Wnt signaling, antigen processing and presentation, cytokine receptor interaction, Adenosine 3',5'-cyclic monophosphate signaling pathway, and NF-κB signaling. In addition, heat shock protein (HSP) levels also changed significantly after REV infection. These findings help clarify interactions between REV and the host, and provides mechanistic insights on REV-induced host immunosuppression.
Project description:Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America. To test the hypothesis that strain divergence might be driven by differences between mammalian and avian response to infection, we examine in vitro strain-dependent host responses in a representative avian host, the chicken. To identify parasite drivers of strain-dependent host response, QTL mapping was used; analysis revealed a locus on Toxoplasma chromosome VIIb. To determine whether this was the parasite gene ROP16, array analysis was performed on chicken embryonic fibroblasts infected with Type I parasites and ROP16-KO parasites (of a Type I background). Chicken embryonic fibroblasts were cultivated in vitro and infected with either Type I (RH) parasites or Type I ROP16-KO parasites; ROP16-dependent host transcriptional responses were then analyzed at 5 hours post-infection.