Project description:Repeated parallel losses of inflexed stamens in Moraceae: phylogenomics and generic revision of the tribe Moreae and the reinstatement of the tribe Olmedieae (Moraceae)
| PRJEB37667 | ENA
Project description:Resolving generic limits in Cyperaceae tribe Abildgaardieae using targeted sequencing
Project description:The specific genes that distinguish normal fracture healing from abnormal healing or nonunion in humans are unknown. This study was an exploratory investigation of peripheral blood from 2 chronic nonunion patients collected perioperatively (pre/post revision surgery) and at 3 months post revision follow up for comparison to Acutely injured subjects and Healthy volunteer cohorts analyzed separately. We used microarrays to do a global comparison between 2 chronic nonunion patients collected perioperatively (pre/post revision surgery) and at 3 months post revision follow up.
Project description:The specific genes that distinguish normal fracture healing from abnormal healing or nonunion in humans are unknown. This study was an exploratory investigation of peripheral blood from 2 chronic nonunion patients collected perioperatively (pre/post revision surgery) and at 3 months post revision follow up for comparison to Acutely injured subjects and Healthy volunteer cohorts analyzed separately. We used microarrays to do a global comparison between 2 chronic nonunion patients collected perioperatively (pre/post revision surgery) and at 3 months post revision follow up.
Project description:Processing bodies (PBs) are dynamic, membraneless organelles consisting of RNAs and proteins. While PB proteins have been extensively characterized, the methods for systematically profiling PB-associated RNAs are limited. To address this, we developed PB-TRIBE-STAMP, a new tool based on two orthogonal RNA editing enzymes. Simultaneously applying APOBEC1-DDX6 and LSM14A-ADAR2dd, PB-TRIBE-STAMP identified 1,639 and 2,577 PB-associated mRNAs in HCT116 and HEK293T cells, respectively. Further biochemical isolation of PBs followed by RNA-seq validated that edited transcripts of these mRNAs were indeed enriched in PBs. Integration of PB-TRIBE-STAMP with long-read sequencing revealed that the PB-associated transcripts possessed shorter poly(A)-tails and mRNA isoforms with longer 3’ UTRs were more likely to be associated with PBs than those with shorter ones. Moreover, we established a TRIBE-ID-based tool to characterize the mRNA-PB association at high temporal resolution and unveiled a higher splicing efficiency of PB-associated XBP1 transcripts during unfolded protein response (UPR). Finally, based on single-cell LSM14A-TRIBE-ID (sc-LSM14A-TRIBE-ID), we demonstrated the dynamic pattern of mRNA-PB association during cell cycle progression.
Project description:Processing bodies (PBs) are dynamic, membraneless organelles consisting of RNAs and proteins. While PB proteins have been extensively characterized, the methods for systematically profiling PB-associated RNAs are limited. To address this, we developed PB-TRIBE-STAMP, a new tool based on two orthogonal RNA editing enzymes. Simultaneously applying APOBEC1-DDX6 and LSM14A-ADAR2dd, PB-TRIBE-STAMP identified 1,639 and 2,577 PB-associated mRNAs in HCT116 and HEK293T cells, respectively. Further genetic perturbation demonstrated that these transcripts were translationally repressed by PBs. Next, integration of PB-TRIBE-STAMP with long-read sequencing revealed that the PB-associated transcripts possessed shorter poly(A)-tails. Moreover, we established a TRIBE-ID-based tool to characterize the mRNA-PB association at high temporal resolution and unveiled a higher splicing efficiency of PB-associated XBP1 transcripts during unfolded protein response (UPR). Finally, based on sc-LSM14A-TRIBE-ID, we demonstrated the dynamic pattern of mRNA-PB interaction during cell cycle progression.
Project description:Processing bodies (PBs) are dynamic, membraneless organelles consisting of RNAs and proteins. While PB proteins have been extensively characterized, the methods for systematically profiling PB-associated RNAs are limited. To address this, we developed PB-TRIBE-STAMP, a new tool based on two orthogonal RNA editing enzymes. Simultaneously applying APOBEC1-DDX6 and LSM14A-ADAR2dd, PB-TRIBE-STAMP identified 1,639 and 2,577 PB-associated mRNAs in HCT116 and HEK293T cells, respectively. Further genetic perturbation demonstrated that these transcripts were translationally repressed by PBs. Next, integration of PB-TRIBE-STAMP with long-read sequencing revealed that the PB-associated transcripts possessed shorter poly(A)-tails. Moreover, we established a TRIBE-ID-based tool to characterize the mRNA-PB association at high temporal resolution and unveiled a higher splicing efficiency of PB-associated XBP1 transcripts during unfolded protein response (UPR). Finally, based on sc-LSM14A-TRIBE-ID, we demonstrated the dynamic pattern of mRNA-PB interaction during cell cycle progression.
Project description:Most current methods to identify cell-specific RNA binding protein (RBP) targets require analyzing an extract, a strategy that is problematic with small amounts of material. We previously addressed this issue by developing TRIBE, a method that expresses an RBP of interest fused to the catalytic domain (cd) of the RNA editing enzyme ADAR. TRIBE performs Adenosine-to-Inosine editing on candidate RNA targets of the RBP. However, target identification is limited by the efficiency of the ADARcd. Here we describe HyperTRIBE, which carries a previously characterized hyperactive mutation (E488Q) of the ADARcd. HyperTRIBE identifies dramatically more editing sites than TRIBE, many of which are also edited by TRIBE but at a much lower editing frequency. The data have mechanistic implications for the enhanced editing activity of the HyperADARcd as part of a RBP fusion protein and also indicate that HyperTRIBE more faithfully recapitulates the known binding specificity of its RBP than TRIBE.