Project description:Axon regeneration is a necessary step toward functional recovery after spinal cord injury. The AP-1 transcription factor c-Jun has long been known to play an important role in directing the transcriptional response of Dorsal Root Ganglion (DRG) neurons to peripheral axotomy that results in successful axon regeneration. Here we performed ChIPseq for Jun in mouse DRG neurons after a sciatic nerve crush or sham surgery in order to measure the changes in Jun’s DNA binding in response to peripheral axotomy. We found that the majority of Jun’s injury-responsive changes in DNA binding occur at putative enhancer elements, rather than proximal to transcription start sites. We also used a series of single polypeptide chain tandem transcription factors to test the effects of different Jun-containing dimers on neurite outgrowth in cortical and hippocampal neurons. These experiments demonstrated that dimers composed of Jun and Atf3 promoted neurite outgrowth in rat CNS neurons. Our work provides new insight into the mechanisms underlying Jun’s role in axon regeneration.
Project description:Adult CNS trauma frequently causes neuronal disconnection and persistent deficits due to failed axon regeneration. While model system screening has identified candidate neural repair genes, ApoE – LRP8 signaling is unique in being implicated clinically. Here, we show that cortical axon regeneration requires LRP8 and is modified by APOE variants. ApoE2-expressing mice show reparative corticospinal and raphespinal axon growth with greater motor function than controls after spinal cord injury. Distinct from ApoE in other settings, there is no change in inflammation or scarring. After axotomy, ApoE exerts allele_x0002_specific effects on LRP8 localization and signaling in cortical neurons. APOE alleles regulate synaptic organization gene expression by cortical neurons after injury, with little effect on glial gene expression. AAV-mediated overexpression of ApoE2 in mice after spinal trauma increased locomotor recovery and reparative axon growth. Thus, a role for ApoE – LRP8 signaling is supported by preclinical and clinical observations, providing a potential site for intervention.
Project description:Neonatal spinal cord tissues exhibit remarkable regenerative capabilities compared to adult tissues following injury. Although some cellular signaling pathways involved in the process have been identified, the specific role of extracellular matrix (ECM) responsible for neonatal spinal cord regeneration has remained elusive. Here we revealed that early developmental spinal cord contained a higher abundance of ECM proteins associated with neural development and axon growth but fewer inhibitory proteoglycans compared to adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserve the major difference of native spinal cord tissues in both stages. Compared to DASCM, DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs), as well as facilitated the long-distance axonal outgrowth and axon regeneration of spinal cord organoids. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to the remarkable neural regeneration ability. Furthermore, DNSCM demonstrated superior performance when used as a delivery vehicle for NPCs and organoids in rats with spinal cord injury (SCI). It suggests that ECM cues derived from different development stage might contribute to the distinct regeneration ability of spinal cord.
Project description:Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although motor axon exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMN) as a model system. SACMN are a homogeneous population of spinal MNs whose axons leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein, BEN. We show that the homeodomain transcription factor, Nkx2.9, is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMN and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling. We utilized microarray technology to identify novel downstream effectors of the homeodomain transcription factor, Nkx2.9, that regulate spinal accessory motor neuron development.
Project description:In humans and other mammals, spinal cord injury (SCI) can lead to a permanent loss of sensory and motor function, due to the inability of damaged neurons and axons to regenerate. However, other vertebrate species including zebrafish exhibit complete spinal cord regeneration and functional recovery after SCI. Wnt signaling is required for neurogenesis and axon regrowth in a larval zebrafish SCI model, but the genes regulated by this pathway and the cell types that express them remain largely unknown. In this study, we used bulk RNA-sequencing (RNAseq) to identify candidate genes regulated by Wnt signaling that are expressed after SCI. Using this unbiased screen, we identified multiple genes previously unassociated with SCI in larval zebrafish. Our data reveal potential novel gene targets and cell populations that may play important roles in spinal cord regeneration.
Project description:Injured sensory neurons activate a transcriptional program necessary for robust axon regeneration and eventual target reinnervation. Understanding the transcriptional regulators that govern this axon regenerative response may guide therapeutic strategies to promote axon regeneration in the injured nervous system. Here, we used cultured dorsal root ganglia neurons to identify pro-regenerative transcription factors. Using RNA sequencing, we first characterized this neuronal culture and determined that embryonic day 13.5 DRG (eDRG) neurons cultured for 7 days are similar to e15.5 DRG neurons in vivo and that all neuronal subtypes are represented. This eDRG neuronal culture does not contain other non-neuronal cell types. Next, we performed RNA sequencing at different time points after in vitro axotomy. Analysis of differentially expressed genes revealed upregulation of know regeneration associated transcription factors, including Jun Atf3 and Rest, paralleling the axon injury response in vivo. Analysis of transcription factor binding sites in differentially expressed genes revealed other known transcription factors promoting axon regeneration, such as Myc, Hif1a, Pparg, Ascl1a, Srf, as well as other transcription factors not yet characterized in axon regeneration. We next tested if overexpression of known and novel candidate transcription factors alone or in combination promote axon regeneration in vitro. Our results demonstrate that expression of Ctcf with Yy1 or E2f2 enhances in vitro axon regeneration. Our analysis reveals that pairs of transcription factors can functionally synergize to promote axon regeneration and highlight that transcription factor interaction play an important role as a regulator of axon regeneration.
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Analysis of the areas directly (spinal cord) and indirectly (raphe and sensorimotor cortex) affected by injury will help understanding mechanisms of SCI. Hypothesis: Areas of the brain primarily affected by spinal cord injury are the Raphe and the Sensorimotor cortex thus gene expression profiling these two areas might contribute understanding the mechanisms of spinal cord injury. Specific Aim: The project aims at finding significantly altered genes in the Raphe and Sensorimotor cortex following an induced moderate spinal cord injury in T9.