Project description:Plant-based protein sources play an important role in aquaculture by dwindling fish meal to sustainable levels. However, the use of such feedstuffs requires nutrient supplementation to fulfil fish nutritional requirements. This work addressed the response in the liver of farmed fish to dietary methionine (Met), assessing at the same time the growth performance. Fish were fed at suboptimal levels of dietary Met (0.77% w/w; M0.65 diet), within (1% w/w Met; M0.85 diet)and above(1.36 % w/w Met (M1.25 diet); 1.66% w/w Met(M1.5 diet)) the estimated requirement for this species, in a total of four tested conditions. The impact of dietary methionine supplementation in seabass juvenile’s performance was assessed through 85 days of trial, between May and August of 2018. Fish were reared in triplicate tanks and three liver samples/tank (9 per treatment) were collected for liver proteome analysis at the end of the trial i.e., after 85 days of feeding.
Project description:Plant-based protein sources play an important role in aquaculture by dwindling fish meal to sustainable levels. However, the use of such feedstuffs requires nutrient supplementation to fulfil fish nutritional requirements. This work addressed the response in the liver of farmed fish to dietary methionine (Met), assessing at the same time the growth performance. Fish were fed at suboptimal levels of dietary Met (0.77% w/w; M0.65 diet), within (1% w/w Met; M0.85 diet)and above(1.36 % w/w Met (M1.25 diet); 1.66% w/w Met(M1.5 diet)) the estimated requirement for this species, in a total of four tested conditions. The impact of dietary methionine supplementation in seabass juvenile’s performance was assessed through 85 days of trial, between May and August of 2018. Fish were reared in triplicate tanks and three liver samples/tank (9 per treatment) were collected for liver proteome analysis at the beginning and at the end of the trial i.e., after 18 and 85 days offeeding, correspondingly. This dataset refers to the 18th day of sampling.
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass gonads at various developmental stages. The protandric Asian seabass or barramundi (Lates calcarifer) typically matures as a male at approximately 2M-bM-^@M-^S4 years of age and then changes sex to a female in later years. For this experiment, Asian seabass of several ages were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore and from farms around Singapore. There were no treatments carried out in this experiment. The gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994). Altogether, we analyzed 22 gonadal samples that could be classified into six different types of gonads. Total 22 samples: Adult Ovaries (F3-stage; 5 years old fish) : 4 Adult Testes (M3-stage; 5 years old fish) : 4 Early Testes (M3-stage; 8-9 months old fish) : 3 Early Transforming Gonads (>2 years old fish) : 3 Late Transforming Gonads (>2 years old fish) : 4 Undifferentiated Gonads (4.5 months old fish) : 4
Project description:Rainbow trout (Oncorhynchus mykiss) is an important aquaculture fish species that is farmed worldwide, and it is also the most widely cultivated cold water fish in China. This species, a member of the salmonidae family, is an ideal model organism for studying the immune system in fish. Two phenotypes of rainbow trout are widely cultured; wild-type rainbow trout with black skin (WR_S) and yellow mutant rainbow trout with yellow skin (YR_S). Fish skin is an important immune organ, however, little is known about the differences in skin immunity between WR_S and YR_S in a natural flowing water pond aquaculture environment, and very few studies were conducted to investigate the ceRNA mechanism for fish skin.
Project description:Due to multi-generation domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disrupts local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic risks posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene expression differences among divergent farmed, wild and F1 hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of late sac fry of a European (EO) farmed (“StofnFiskur”, Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1 hybrids using 44K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected fewer differentially expressed transcripts between F1 hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the fitness of wild populations.
2022-03-11 | GSE184425 | GEO
Project description:Aeromonas veronii, in farmed European seabass (Dicentrarchus labrax)
Project description:Understanding the molecular mechanisms of feed efficiency is an important step toward sustainability of salmonids aquaculture. In this study, the liver and white muscle proteomes of efficient (EFF) and inefficient (INEFF) Chinook salmon (Oncorhynchus tshawytscha) farmed in sea water were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. In total, 2,746 liver and 702 white muscle quantified proteins were compared between 21 EFF and 22 INEFF fish. Protein synthesis was enriched in both liver and white muscle of the EFF group while conversely, pathways related to protein degradation (amino acid catabolism and proteolysis, respectively) were the most affected processes in the liver and white muscle of INEFF fish. The SOM in the INEFF group was significantly higher than EFF fish showing INEFF fish probably was the dominant group. The INEFF group (dominant) suffered stress and shifted to consume energy through protein catabolism. As the first study, the results provide a preliminary picture of the fundamental molecular landscape of feed efficiency in Chinook salmon farmed in sea water
Project description:Farmed Atlantic salmon was given either a 6 % cellulose diet, a diet containing 6 % shrimp shell chitin or a diet containing 6 % chitin from black soldier fly larvae for a period of 4 weeks. The fish were split into six tanks at the beginning of the experiment; six fish per tank and two tanks per diet. RNA from stomach and pyloric caeca from four fish given each diet was sequenced.
Project description:Gills of teleost fish represent a vital multifunctional organ; however, they are subjected to environmental stressors, causing gill damage. Gill damage is associated with significant losses in the Atlantic salmon aquaculture industry. Gill disorders due to environmental stressors are exacerbated by global environmental changes, especially with open-net pen aquaculture (as farmed fish lack the ability to escape those events). The local and systemic response to gill damage, concurrent with several environmental insults, are not well investigated. We performed field sampling to collect gill and liver tissue after several environmental insults. Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged gill tissue. The gill damage-associated biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon gill health.
Project description:<p><strong>INTRODUCTION:</strong> Feed optimization is a key step to the environmental and economic sustainability of aquaculture, especially for carnivorous species. Plant-derived ingredients can contribute to reduce costs and nitrogenous effluents while sparing wild fish stocks. However, the metabolic use of carbohydrates from vegetable sources by carnivorous fish is still not completely understood.</p><p><strong>OBJECTIVES:</strong> We aimed to study the effects of diets with carbohydrates of different digestibilities, gelatinized starch (DS) and raw starch (RS), in the muscle metabolome of European seabass (Dicentrarchus labrax).</p><p><strong>METHODS:</strong> We followed an NMR-metabolomics approach, using two sample preparation procedures, the intact muscle (HRMAS) and the aqueous muscle extracts (1H NMR), to compare the variations in muscle metabolome between the two diets.</p><p><strong>RESULTS:</strong> In muscle, multivariate analysis revealed similar metabolome shifts for DS and RS diets, when compared with the control diet. HRMAS of intact muscle, which included both hydrophobic and hydrophilic metabolites, showed increased lipid in DS-fed fish by univariate analysis. Regardless of the nature of the starch, increased glycine and phenylalanine, and decreased proline were observed when compared to the Ctr diet. Combined univariate analysis of intact muscle and aqueous extracts indicated specific diet related changes in lipid and amino acid metabolism, consistent with increased dietary carbohydrate supplementation.</p><p><strong>CONCLUSIONS:</strong> Due to differential sample processing, outputs differ in detail but provide complementary information. After tracing nutritional alterations by profiling fillet components, DS seems to be the most promising alternative to fishmeal-based diets in aquaculture. This approach should be reproducible for other farmed fish species and provide valuable information on nutritional and organoleptic properties of the final product. </p>