Project description:Extrachromosomal DNA (ecDNA) amplification enhances intercellular oncogene dosage variability and accelerates tumor evolution by violating foundational principles of genetic inheritance through its asymmetric mitotic segregation. Spotlighting high-risk neuroblastoma we demonstrate how ecDNA amplification undermines the clinical efficacy of current therapies in cancers with extrachromosomal MYCN amplification. Integrating theoretical models of oncogene copy number-dependent fitness with single-cell ecDNA quantification and phenotype analyses, we reveal that ecDNA copy number heterogeneity drives phenotypic diversity and determines treatment sensitivity through mechanisms unattainable by chromosomal oncogene amplification. We demonstrate that ecDNA copy number directly influences critical cell fate decisions in cancer cell lines, patient-derived xenografts and primary neuroblastomas, illustrating how extrachromosomal oncogene dosage-driven phenotypic diversity offers a strong evolutionary advantage under therapeutic pressure. Furthermore, we identify senescent ecDNA-containing cells with reduced copy numbers in neuroblastomas and other MYC-amplified cancers as a source of treatment resistance and outline a strategy for their targeted elimination to improve the poor outcome of patients with MYCN-amplified cancers.
Project description:Intratumor heterogeneity and phenotypic plasticity drive tumour progression and therapy resistance. Oncogene dosage variation contributes to cell state transitions and phenotypic heterogeneity, thereby providing a substrate for somatic evolution. Nonetheless, the genetic mechanisms underlying phenotypic heterogeneity are still poorly understood. Here, we show that extrachromosomal DNA (ecDNA) is a major source of high-level focal amplification in key oncogenes and a major contributor of MYC heterogeneity in pancreatic ductal adenocarcinoma (PDAC). We demonstrate that ecDNAs drive varying levels of MYC dosage, depending on their regulatory landscape, enabling cancer cells to rapidly and reversibly adapt to microenvironmental changes. In absence of selective pressure, a high ecDNA copy number imposes a substantial fitness cost on PDAC cells. We also show that MYC dosage affects cell morphology and dependence of cancer cells on stromal niche factors. Our work provides the first detailed analysis of ecDNAs in PDAC and describes a new genetic mechanism driving MYC heterogeneity in PDAC.
Project description:Intratumor heterogeneity and phenotypic plasticity drive tumour progression and therapy resistance. Oncogene dosage variation contributes to cell state transitions and phenotypic heterogeneity, thereby providing a substrate for somatic evolution. Nonetheless, the genetic mechanisms underlying phenotypic heterogeneity are still poorly understood. Here, we show that extrachromosomal DNA (ecDNA) is a major source of high-level focal amplification in key oncogenes and a major contributor of MYC heterogeneity in pancreatic ductal adenocarcinoma (PDAC). We demonstrate that ecDNAs drive varying levels of MYC dosage, depending on their regulatory landscape, enabling cancer cells to rapidly and reversibly adapt to microenvironmental changes. In absence of selective pressure, a high ecDNA copy number imposes a substantial fitness cost on PDAC cells. We also show that MYC dosage affects cell morphology and dependence of cancer cells on stromal niche factors. Our work provides the first detailed analysis of ecDNAs in PDAC and describes a new genetic mechanism driving MYC heterogeneity in PDAC.
Project description:Although tyrosine kinase inhibitors (TKIs) targeting Epidermal Growth Factor Receptor (EGFR) activating mutations have significantly improved outcomes in EGFR-mutant non-small cell lung cancer, resistance inevitably develops. Despite the heterogeneity of resistance mechanisms, many induce activation of MAPK signaling in the presence of EGFR-TKIs. ARAF gene amplification is identified as one such mechanism that activates MAPK signaling by directly interacting with RAS, yet its clinicopathologic characteristics remain poorly understood. We characterized five cases with ARAF amplification resistant to first- or second-generation EGFR-TKIs and screened an additional 48 re-biopsied specimens following resistance to Osimertinib. Among Osimertinib-resistant tumors, we identified four cases with ARAF amplification. Overall, these nine ARAF-amplified resistant tumors retained their original founder EGFR mutation and lacked secondary alterations. Furthermore, we identified two cases showing histologic transformation from lung adenocarcinoma to small cell lung cancer (SCLC). SCLC can be classified into four subtypes defined by transcriptional signatures driven by specific transcription factors. To estimate the subtypes of these resistant tumors, RNA sequencing analysis was performed in paired samples before and after treatment with EGFR-TKIs.
Project description:Summary: Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (also known as NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein level. siRNA-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival, and implicate TITF1 as a lineage-specific oncogene in lung cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Cell Line Keywords: Logical Set cDNA microarrays from the Stanford Functional Genomics Facility were used to perform array based Comparative Genomic Hybridization (aCGH) analysis on 52 non-small cell lung cancer (NSCLC) cell lines and 76 NSCLC tumors (36 adenocarcinomas including 2 metastases, and 40 squamous cell carcinomas including 1 metastasis). In addition, this dataset includes 6 immortalized and 3 non-immortalized lung epithelial cell lines and 1 male vs. female genomic DNA for hybridization control. Map positions for arrayed cDNA clones were assigned using the NCBI genome assembly, accessed through the UCSC genome browser database (NCBI Build 36). The most frequent focal DNA amplification not associated with a previously known oncogene occurred at cytoband 14q13.3 where TITF1 resides. The sample labeled normal is a "Normal male vs.female DNA" comparison; the samples: SAEC, HBEC3-UI, HBEC5-UI, HBEC2-KT, HBEC3-KT, HBEC4-KT, HBEC5-KT, HBEC2-E, BEAS-2B are Normal lung epithelial cell lines; samples starting with L are all Lung tumor samples and all the rest are Lung cancer cell lines. Computed
Project description:Chromosomal instability in gastric cancer cells is associated with the amplification of oncogenes that encode receptor tyrosine kinases (RTKs), such as HER2 and FGFR2; such gene amplification varies from cell to cell and manifests as genetic heterogeneity within tumours. The intratumoural genetic heterogeneity of RTK gene amplification causes heterogeneity in RTK protein expression, which has been suggested to be associated with therapeutic resistance to RTK inhibitors; however, the underlying mechanism is not fully understood. Here, we show that extrachromosomal DNA (ecDNA) causes intratumoural genetic heterogeneity in RTKs and drug resistance due to diverse dynamic changes. We analysed the dynamics of FGFR2 and MYC ecDNA in a gastric cancer cell line after single-cell cloning. Similar to those in parental cells, the copy numbers of FGFR2 and MYC in subclones differed significantly between cells, indicating intraclonal genetic heterogeneity. Furthermore, the ecDNA composition differed between subclones, which affected FGFR2 protein expression and drug sensitivity. Interestingly, clone cells that were resistant to the FGFR2 inhibitor AZD4547 presented diverse changes in ecDNA, including chimeric ecDNA, large ecDNA and increased ecDNA numbers; these changes were associated with high expression and rephosphorylation of FGFR2. Conversely, when resistant clone cells were cultured under conditions that excluded AZD4547, the ecDNA status became similar to that of the original clone cells, and the inhibitory effect on cell growth was restored. Our results show that dynamic quantitative and qualitative changes in ecDNA can drive the intratumoural genetic heterogeneity of RTKs and resistance to RTK inhibitors.
Project description:Chromosomal instability in gastric cancer cells is associated with the amplification of oncogenes that encode receptor tyrosine kinases (RTKs), such as HER2 and FGFR2; such gene amplification varies from cell to cell and manifests as genetic heterogeneity within tumours. The intratumoural genetic heterogeneity of RTK gene amplification causes heterogeneity in RTK protein expression, which has been suggested to be associated with therapeutic resistance to RTK inhibitors; however, the underlying mechanism is not fully understood. Here, we show that extrachromosomal DNA (ecDNA) causes intratumoural genetic heterogeneity in RTKs and drug resistance due to diverse dynamic changes. We analysed the dynamics of FGFR2 and MYC ecDNA in a gastric cancer cell line after single-cell cloning. Similar to those in parental cells, the copy numbers of FGFR2 and MYC in subclones differed significantly between cells, indicating intraclonal genetic heterogeneity. Furthermore, the ecDNA composition differed between subclones, which affected FGFR2 protein expression and drug sensitivity. Interestingly, clone cells that were resistant to the FGFR2 inhibitor AZD4547 presented diverse changes in ecDNA, including chimeric ecDNA, large ecDNA and increased ecDNA numbers; these changes were associated with high expression and rephosphorylation of FGFR2. Conversely, when resistant clone cells were cultured under conditions that excluded AZD4547, the ecDNA status became similar to that of the original clone cells, and the inhibitory effect on cell growth was restored. Our results show that dynamic quantitative and qualitative changes in ecDNA can drive the intratumoural genetic heterogeneity of RTKs and resistance to RTK inhibitors.
Project description:Lung cancer remains the most common cause of cancer deaths worldwide, yet there is currently a lack of diagnostic noninvasive biomarkers that could guide treatment decisions. Small molecules (<1500 Da) were measured in urine collected from 469 lung cancer patients and 536 population controls using unbiased liquid chromatography-mass spectrometry. Clinical putative diagnostic and prognostic biomarkers were validated by quantitation and normalized to creatinine levels at two different time points and further validated in an independent sample set, which comprises 80 cases and 78 population controls, with similar demographic and clinical characteristics when compared to the training set. Creatine riboside (IUPAC name: 2-{2-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1-methylcarbamimidamido}acetic acid), a novel molecule identified in this study, and N-acetylneuraminic acid (NANA), were each significantly (P <0.00001) elevated in non–small cell lung cancer (NSCLC) and associated with worse prognosis (hazard ratio (HR) =1.81 [P =0.0002], and 1.54 [P =0.025], respectively). Creatine riboside was the strongest classifier of lung cancer status in all and stage I–II cases, important for early detection, and also associated with worse prognosis in stage I–II lung cancer (HR =1.71, P =0.048). All measurements were highly reproducible with intraclass correlation coefficients ranging from 0.82 – 0.99. Both metabolites were significantly (P <0.03) enriched in tumor tissue compared to adjacent non-tumor tissue (N =48), thus revealing their direct association with tumor metabolism. Creatine riboside and NANA may be robust urinary clinical metabolomic markers that are elevated in tumor tissue and associated with early lung cancer diagnosis and worse prognosis.