Project description:Multiple populations from the North Pacific and the North Atlantic of the northern acorn barnacle Semibalanus balanoides Raw sequence reads
Project description:Barnacles are conspicuous members of rocky intertidal communities and settlement of the final larval stage, the cyprid, is influenced by the presence of biofilms. While modulation of cyprid settlement by biofilms has been studied extensively, the acquisition of a specific microbiome by the settling larva has not. This study investigated settlement in the field of Semibalanus balanoides in two consecutive years when the composition of the benthic bacterial community differed. In both years, settling cyprids adopted a specific sub-set of benthic bacteria that was distinct from the planktonic cyprid and the benthos. This microbiome was consistent, regardless of annual variability in the benthic community structure, and established within hours of settlement. The results imply that a natural process of selection occurs during the critical final transition of S. balanoides to the sessile form. The apparent consistency of this process between years suggests that optimal growth and survival of barnacles could depend upon a complex inter-kingdom relationship, as has been demonstrated in other animal systems.
Project description:BackgroundNatural populations inhabiting the rocky intertidal experience multiple ecological stressors and provide an opportunity to investigate how environmental differences influence microbiomes over small geographical scales. However, very few microbiome studies focus on animals that inhabit the intertidal. In this study, we investigate the microbiome of the intertidal barnacle Semibalanus balanoides. We first describe the microbiome of two body tissues: the feeding appendages, or cirri, and the gut. Next, we examine whether there are differences between the microbiome of each body tissue of barnacles collected from the thermally extreme microhabitats of the rocky shores' upper and lower tidal zones.ResultsOverall, the microbiome of S. balanoides consisted of 18 phyla from 408 genera. Our results showed that although cirri and gut microbiomes shared a portion of their amplicon sequence variants (ASVs), the microbiome of each body tissue was distinct. Over 80% of the ASVs found in the cirri were also found in the gut, and 44% of the ASVs found in the gut were also found in the cirri. Notably, the gut microbiome was not a subset of the cirri microbiome. Additionally, we identified that the cirri microbiome was responsive to microhabitat differences.ConclusionResults from this study indicate that S. balanoides maintains distinct microbiomes in its cirri and gut tissues, and that the gut microbiome is more stable than the cirri microbiome between the extremes of the intertidal.