Project description:Previous studies have evaluated pork quality by omics methods. However, proteomics coupled with metabolomics to investigate pork freshness by using pork exudates has not been reported. This study determined the changes in profiles of peptides and metabolites in exudates from pork stored at different temperatures (25, 10, 4, and -2 ℃). Multivariate statistical analysis revealed similar changes in profiles in exudates collected from pork stored at -2 and 4 ℃, and additional changes following storage at higher temperatures. We identified peptides from 7 proteins and 30 metabolites differing in abundance between fresh and spoiled pork. Significant correlations be-tween pork quality and most of the peptides from these 7 proteins and 30 metabolites were found. The present study provides insight into changes in peptide and metabolite profiles of exudates from pork during storage at different temperatures and our analysis suggest that such changes can be used as markers for pork spoilage.
Project description:Intramuscular (i.m.) fat content influencing consumer’s acceptability of pork is considered as a limiting factor for meat quality. To gain insight into the biological basis of individual variability in i.m. fat content, both gene expression profiling and proteomic investigation were associated in pig longissimus muscle (LM). Keywords: intramuscular fat, gene expression, pigs, proteomics, microarray, pork meat
Project description:To understand the molecular basis of distinct pork quality in Chinese indigenous and Western breed, longissimus dorsi samples were collected from three adult Northeastern Indigenous and from three adult Large White. Total RNA was extracted and subjected to porcine Affymetrix Genechip. The study helps to elucidate the genetic mechnism of divergent pork quality and provide the theory basis for selection and genetic improvement of meat quality traits in porcine.
Project description:Intramuscular (i.m.) fat content influencing consumerâs acceptability of pork is considered as a limiting factor for meat quality. To gain insight into the biological basis of individual variability in i.m. fat content, both gene expression profiling and proteomic investigation were associated in pig longissimus muscle (LM). Keywords: intramuscular fat, gene expression, pigs, proteomics, microarray, pork meat Animals were sampled from a population of 1,000 pigs generated as an F2 intercross between two production sire lines: FH016 (Pietrain type, France Hybrides SA, St Jean de Braye, France) and FH019 (Synthetic line, from Duroc, Hampshire and Large White founders, France Hybrides SA, St Jean de Braye, France).
Project description:To understand the molecular basis of distinct pork quality in Chinese indigenous and Western breed, longissimus dorsi samples were collected from three adult Northeastern Indigenous and from three adult Large White. Total RNA was extracted and subjected to porcine Affymetrix Genechip. The study helps to elucidate the genetic mechnism of divergent pork quality and provide the theory basis for selection and genetic improvement of meat quality traits in porcine. Six longissimus dorsi samples were collected from three Northeastern Indigenous and from three Large White. Three Large White were control samples. Total RNA was extracted from each sample.Gene-expression profiling was performed for each RNA sample separately on the GeneChip® Porcine Genome Array at CapitalBio Corporation (Beijing, China).
Project description:Transcriptional profiling of two disinfectant-resistant Listeria monocytogenes strains indentified in a Iberian pork plant, S1 [160908] vs S10_1 [160908], in presence of 1.25 mg/L of Benzalkonium chloride
Project description:The main aim of this study was to unravel key proteins for the differentiation of Tibetan (n=15) and Duroc × (Landrace × Yorkshire) (n=15) pork. A platform consisting of LC-MS/MS analysis and label-free quantitative proteomics was utilized. Changes in the proteome profile were observed for different pork cuts. A total of 91 and 116 differentially expressed proteins (fold change >2 or <0.5, p-value<0.05) were identified in the five cuts (shoulder, rump, loin, shank and belly) of Tibetan (TP) and Duroc × (Landrace × Yorkshire) (DLY) pork, respectively. Meanwhile, a comparative proteomic analysis was performed between the TP and DLY pork. We identified 102 altered expressed proteins, of which 52.9% (n=54) and 47.1% (n=48) were up- and down-regulated, respectively, in DLY pork compared to TP. Functional analysis of these proteins revealed that the most significantly enriched gene ontology term for biological process was purine-containing compound metabolic process (p=0.003), while that for molecular function was threonine-type peptidase activity (p=0.002), and that for cellular component was mitochondrial inner membrane (p=0.001). The most significantly enriched KEGG pathway was involved in histidine metabolism (p=0.01), followed by oxidative phosphorylation (p=0.02). Using chemometrics approach, we identify 68 significant proteins for the discrimination of TP and DLY pork. The most significantly upregulated proteins in TP and DLY pork were nicotinamide nucleotide transhydrogenase and heat shock protein 90-beta, respectively. This study demonstrates the feasibility of using differential proteomic analysis to discriminate between TP and DLY pork and the current data set can be expanded to a larger sample size for possible discriminant validation.