Project description:Microalgal lipid, a feasible substrate for biofuel, is typically accumulated during the stationary growth phase. Generating strains which trigger lipogenesis from the exponential growth phase will enhance lipid productivity, reduce cost of biofuel production. We characterized a lipid-rich microalgal mutant, Dunaliella tertiolecta, which exhibited a six-fold enhancement of neutral lipids production in the exponential growth phase with marginal compromise on growth (4%). Using transcriptomics and metabolomics, regulatory mechanisms of the mutant were uncovered.
Project description:Limited systems-level understanding of CO2 concentrating mechanism (CCM) and metabolic adaption in response to different CO2-level in wild oleaginous algae has hindered the development of microalgal feedstock and the knowledge of its role in global warming and oceanic acidification. Nannochloropsis are a group of small unicellular microalgae widely distributed in oceans and fresh water, which implies that it plays a crucial role in biogeochemical cycles impinged on global climate change. In addition, Nannochloropsis has been used for flue gas fixation in many large-scale and pilot-scale outdoor cultivation facilities for photosynthetic production of fuels and chemicals. To untangle the intricate genome-wide networks underlying CCM and metabolic adjustment under different CO2 concentrations in Nannochloropsis, we applied high-throughput mRNA-sequencing and reconstructed the structure and dynamics of the genome-wide functional network underlying robust microalgal CCM and in Nannochloropsis oceanica, by tracking the genome-wide, single-base-resolution transcript change for the complete time-courses of different CO2 concentrations.
Project description:The molecular basis of transgene susceptibility to silencing is poorly characterized in plants, thus we evaluated several transgene design parameters as means to reduce heritable sRNA-mediated transgene silencing. Analyses of Arabidopsis plants with transgenes encoding a microalgal polyunsaturated fatty acid (PUFA) synthase revealed that small RNA (sRNA)-mediated silencing, combined with the use of repetitive regulatory elements, led to aggressive transposable element (TE)-like silencing of canola-biased PUFA transgenes. Diversifying regulatory sequences and using native microalgal coding sequences (CDSs) with higher GC content improved transgene expression and resulted in remarkable trans-generational stability via reduced accumulation of sRNAs and DNA methylation. Further experiments in maize with transgenes individually expressing three Bacillus thuringiensis (Bt) crystal proteins tested the impact of CDSs recoding using different codon bias tables. Transgenes with the higher GC content exhibited increased transcript and protein accumulation. These results demonstrate that the sequence composition of transgene CDSs can directly impact silencing providing design strategies for increasing transgene expression levels and reducing risks of heritable loss of transgene expression.
Project description:Limited systems-level understanding of oil synthesis in wild oleaginous algae has hindered the development of microalgal feedstock. Nannochloropsis is a small unicellular microalgae widely distributed in oceans and fresh water. In many large-scale and pilot-scale outdoor cultivation facilities, Nannochloropsis strains have been found to be capable of robust growth when supplied with flue gases, naturally accumulating large quantities of oils in a stationary phase, and exhibiting resistance to environmental contaminants. The rich genomic resources, compact genomes, resistance to foreign DNA invasion, wide ecological adaptation, large collections of natural strains and the demonstrated ability to grow on a large scale suggested Nannochloropsis can serve as research models and platform strains for economical and scalable photosynthetic production of fuels and chemicals. To untangle the intricate genome-wide networks underlying the robust biomass accumulation and oil production in Nannochloropsis, we applied high-throughput mRNA-sequencing and reconstructed the structure and dynamics of the genome-wide functional network underlying robust microalgal triacylglycerol (TAG) production in Nannochloropsis oceanica, by tracking the genome-wide, single-base-resolutiontranscript change for the complete time-courses of nitrogen-depletion-induced TAG synthesis.
Project description:Limited systems-level understanding of oil synthesis in wild oleaginous algae has hindered the development of microalgal feedstock. Nannochloropsis is a small unicellular microalgae widely distributed in oceans and fresh water. In many large-scale and pilot-scale outdoor cultivation facilities, Nannochloropsis strains have been found to be capable of robust growth when supplied with flue gases, naturally accumulating large quantities of oils in a stationary phase, and exhibiting resistance to environmental contaminants. The rich genomic resources, compact genomes, resistance to foreign DNA invasion, wide ecological adaptation, large collections of natural strains and the demonstrated ability to grow on a large scale suggested Nannochloropsis can serve as research models and platform strains for economical and scalable photosynthetic production of fuels and chemicals. To untangle the intricate genome-wide networks underlying the robust biomass accumulation and oil production in Nannochloropsis, we applied high-throughput mRNA-sequencing and reconstructed the structure and dynamics of the genome-wide functional network underlying robust microalgal triacylglycerol (TAG) production in Nannochloropsis oceanica, by tracking the genome-wide, single-base-resolutiontranscript change for the complete time-courses of nitrogen-depletion-induced TAG synthesis. Nannochloropsis oceanica IMET1 cells were grown in liquid cultures under continuous light (approximately 50 M-BM-5mol photons m-2 s-1) at 25M-bM-^DM-^C and aerated by bubbling with a mixture of 1.5% CO2 in air. Mid-logarithmic phase algal cells were collected and washed three times with axenic seawater. Equal numbers of cells were re-inoculated in nitrogen replete medium (Control condition or C, i.e. N+) and nitrogen deprived medium (N deficiency or N, i.e. N-) with 50M-BM-5mol m-2 s-1 light intensity, respectively. Cell aliquots were collected for RNA isolation after being transferred to the designated conditions for 3h, 4h, 6h, 12h, 24h and 48h. Three biological replicates of algal cultures were established under each of the above M-bM-^@M-^\CM-bM-^@M-^] (i.e. N+) and M-bM-^@M-^\NM-bM-^@M-^] (i.e. N-) conditions, respectively. In total, 36 samples collected at six time points (3h,4h,6h,12h,24h and 48h) were used for mRNA-Seq library preparation and then submitted to Illumina HiSeq 2000 for sequencing.