Project description:The regulation of cell cycle progression in response to environmental cues is essential for cellular adaptation. In Saccharomyces cerevisiae, the BAR1 gene modulates sensitivity to the mating pheromone α-factor, which induces cell cycle arrest. Here we investigated the dynamic proteomic response in the bar1 deletion strain using a 27-plex experimental design with TMTproD isobaric labeling. Asynchronous bar1Δ cells were arrested with α-factor and then released from the pheromone arrest. We acquired three replicate protein abundance time-course profiles following pheromone (α-factor) washout, with samples collected at eight time points from 0 to 165 minutes post-washout. Using higher-order TMTpro sample multiplexing, we generated global temporal profiles of protein abundance associated with recovery from pheromone-induced arrest. Our findings identify specific proteins and pathways involved in cell cycle re-entry and in the attenuation of the pheromone signal, providing insights into the regulatory mechanisms of mating response in yeast. This study contributes significantly to dynamic proteomic analysis in cell cycle progression. We present a powerful approach for investigating complex cellular processes and showcase cell cycle progression following pheromone washout in yeast.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:LPS was used as a stressor to stimulate the model organism Saccharomyces cerevisiae. To detect extracellular metabolic information of VOCs. To provide a molecular basis for cellular metabolism of VOCs by proteome.
Project description:Cell cycle sensing of oxidative stress in Saccharomyces cerevisiae by oxidation of a specific cysteine residue in the transcription factor Swi6p. Yeast cells begin to bud and enter S phase when growth conditions are favourable during G1 phase. When subjected to oxidative stress, cells arrest at G1 delaying entry into the cell cycle allowing repair of cellular damage. Hence, oxidative stress sensing is coordinated with the regulation of cell cycle. We identified a redox sensing cysteine residue in the cell-cycle regulator of Saccharomyces cerevisiae, Swi6p, at position 404. Mutation of Cys404 to alanine abolished the ability of the cells to arrest at G1 upon treatment by lipid hydroperoxide. By constructing a truncated form of Swi6p, the Cys404 residue was found to be oxidised when cells were subjected to the oxidant. Furthermore, microarray analysis revealed that mutation of Cys404 to alanine led to loss of suppression of G1-cyclins CLN1 and PCL1 when the cells were exposed to lipid hydroperoxide. In conclusion, oxidation of Cys404 serves as a molecular sensor of oxidative stress and inhibits entry into the cell cycle by suppression of G1-cyclin expression.
Project description:We measured the response of S. cerevisiae to arrest in the presence of alpha factor. These were collected in support of a related DNaseI-sequencing study. Keywords: Alpha-factor arrest
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.