Project description:Conjugative plasmids, major vehicles for the spread of antibiotic resistance genes, often contain multiple toxin‒antitoxin (TA) systems. However, the physiological functions of TA systems remain obscure. By studying TA families commonly found on colistin-resistant IncI2 mcr-1-bearing plasmids, we discovered that the HicAB TA, acts as a crucial addiction module to increase horizontal plasmid‒plasmid competition.
Project description:Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multi-drug resistant strains of the Gram-negative bacteria, Acinetobacter baumannii. However, colistin resistant A. baumannii isolates can be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered an isogenic pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment that displayed low/intermediate and high levels of colistin resistance, respectively. To understand how increased colistin-resistance arose, we genome sequenced each isolate which revealed that 6009-2 had an extra copy of the insertion sequence element ISAba125 within a gene encoding an H-NS-family transcriptional regulator. Consequently, transcriptomic analysis of the clinical isolates identified was performed and more than 150 genes as differentially expressed in the colistin-resistant, hns mutant, 6009-2. Importantly, the expression of eptA, encoding a second lipid A-specific pEtN transferase, but not pmrC, was significantly increased in the hns mutant. This is the first time an H-NS-family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.
Project description:Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure. Colistin is often chosen as a “last resort” for treatment of the bacterial infection, but resistance is easily developed when the bacteria is exposed to the drug. Thus a comprehensive analysis of colistin-mediated changes in colistin-susceptible and colistin-resistant A. baumannii is needed. In this study, we used a colistin-susceptible A. baumannii clinical isolate and a colistin-resistant isogenic mutant. Whole genome sequencing revealed that the resistant isolate harbored a PmrBL208F mutation conferring colistin resistance, and all other single nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, we observed that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were observed when both isolates were exposed to inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. This results helped a better understanding for the morphological difference between the colistin-susceptible and –resistant isolates and differed colistin-mediated responses in A. baumannii isolates by their susceptibility to this drug.
2025-05-02 | GSE267612 | GEO
Project description:Plasmid mediated mcr-1.1 colistin-resistance in clinical extraintestinal Escherichia coli strains isolated in Poland
Project description:To demonstrate plasmid transferability by conjugation, cultures of the donor S. Infantis, and recipient Escherichia coli (E. coli) K12 were mated. S. Infantis and transconjugant were screened for resistance genes.