Project description:Thermobifida fusca is a moderately thermophilic soil bacterium that belongs to Actinobacteria. It is a major degrader of plant cell walls and has been used as a model organism for the study of secreted, thermostable cellulases. The complete genome sequence showed that T. fusca has a single circular chromosome of 3,642,249 bp predicted to encode 3,117 proteins and 65 RNA species with a coding density of 85%. Genome analysis revealed the existence of 29 putative glycoside hydrolases in addition to the previously identified cellulases and xylanases. The glycosyl hydrolases include enzymes predicted to exhibit mainly dextran/starch- and xylan-degrading functions. T. fusca possesses two protein secretion systems: the sec general secretion system and the twin-arginine translocation system. Several of the secreted cellulases have sequence signatures indicating their secretion may be mediated by the twin-arginine translocation system. T. fusca has extensive transport systems for import of carbohydrates coupled to transcriptional regulators controlling the expression of the transporters and glycosylhydrolases. In addition to providing an overview of the physiology of a soil actinomycete, this study presents insights on the transcriptional regulation and secretion of cellulases which may facilitate the industrial exploitation of these systems.
Project description:Allylic alcohols are valuable precursors in the synthesis of pharmaceutical intermediates, agrochemicals and natural products. Regioselective oxidation of parental alkenes is a challenging task for chemical catalysts and requires several steps including protection and deprotection. Many cytochrome P450 enzymes are known to catalyse selective allylic hydroxylation under mild conditions. Here, we describe CYP154E1 from Thermobifida fusca YX that enables this type of oxidation. Several acyclic terpenoids were tested as possible substrates for CYP154E1, and the regio- and chemoselectivity of their oxidation was investigated. Using a previously established bioinformatics approach we identified position 286 in the active site of CYP154E1 which is putatively involved in substrate binding and thereby might have an effect on enzyme selectivity. To tune regio- and chemoselectivity of the enzyme three mutants at position 286 were constructed and used for substrate oxidation. All formed products were analysed with GC-MS and identified using chemically synthesised authentic samples and known compounds as references. Best regioselectivity towards geraniol and nerol was observed with the wild type enzyme mainly leading to 8-hydroxy derivatives (8-hydroxygeraniol or 8-hydroxynerol) with high selectivity (100% and 96% respectively). Highest selectivities during the oxidation of geranylacetone and nerylacetone were observed with the following variants: V286F led mainly to 7-hydroxygeranylacetone (60% of the total product) and V286A produced predominantly 12-hydroxynerylacetone (75% of total product). Thus, CYP154E1 and its mutants expand the tool-box for allylic hydroxylation in synthetic chemistry.
Project description:Thermostability and specific activity of enzymes are two of the most important properties for industrial biocatalysts. Here, we developed a petri dish-based double-layer high-throughput screening (HTS) strategy for rapid identification of desired mutants of polyphosphate glucokinase (PPGK) from a thermophilic actinobacterium, Thermobifida fusca YX, with both enhanced thermostability and activity. Escherichia coli colonies representing a PPGK mutant library were grown on the first-layer Phytagel-based plates, which can remain solid for 1 h, even at heat treatment temperatures of more than 100°C. The second layer that was poured on the first layer contained agarose, substrates, glucose 6-phosphate dehydrogenase (G6PDH), the redox dye tetranitroblue tetrazolium (TNBT), and phenazine methosulfate. G6PDH was able to oxidize the product from the PPGK-catalyzed reaction and generate NADH, which can be easily examined by a TNBT-based colorimetric assay. The best mutant obtained after four rounds of directed evolution had a 7,200-fold longer half-life at 55°C, 19.8°C higher midpoint of unfolding temperature (Tm ), and a nearly 3-fold enhancement in specific activities compared to those of the wild-type PPGK. The best mutant was used to produce 9.98 g/liter myo-inositol from 10 g/liter glucose, with a theoretical yield of 99.8%, along with two other hyperthermophilic enzymes at 70°C. This PPGK mutant featuring both great thermostability and high activity would be useful for ATP-free production of glucose 6-phosphate or its derived products.IMPORTANCE Polyphosphate glucokinase (PPGK) is an enzyme that transfers a terminal phosphate group from polyphosphate to glucose, producing glucose 6-phosphate. A petri dish-based double-layer high-throughput screening strategy was developed by using ultrathermostable Phytagel as the first layer instead of agar or agarose, followed by a redox dye-based assay for rapid identification of ultrathermostable PPGK mutants. The best mutant featuring both great thermostability and high activity could produce glucose 6-phosphate from glucose and polyphosphate without in vitro ATP regeneration.
Project description:Acyl-CoA carboxylases (AcCCase) are biotin-dependent enzymes that are capable of carboxylating more than one short chain acyl-CoA substrate. We have conducted structural and kinetic analyses of such an AcCCase from Thermobifida fusca YX, which exhibits promiscuity in carboxylating acetyl-CoA, propionyl-CoA, and butyryl-CoA. The enzyme consists of two catalytic subunits (TfAcCCA and TfAcCCB) and a non-catalytic subunit, TfAcCCE, and is organized in quaternary structure with a A6B6E6 stoichiometry. Moreover, this holoenzyme structure appears to be primarily assembled from two A3 and a B6E6 subcomplexes. The role of the TfAcCCE subunit is to facilitate the assembly of the holoenzyme complex, and thereby activate catalysis. Based on prior studies of an AcCCase from Streptomyces coelicolor, we explored whether a conserved Asp residue in the TfAcCCB subunit may have a role in determining the substrate selectivity of these types of enzymes. Mutating this D427 residue resulted in alterations in the substrate specificity of the TfAcCCase, increasing proficiency for carboxylating acetyl-CoA, while decreasing carboxylation proficiency with propionyl-CoA and butyryl-CoA. Collectively these results suggest that residue D427 of AcCCB subunits is an important, but not sole determinant of the substrate specificity of AcCCase enzymes.