Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from three different tissue types from three other species of squid species (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein coding genes supported by evidence and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.
Project description:To identify more targets in soybean, particularly specific targets of Cd-stress-responsive miRNAs, high-throughput degradome sequencing was used. In total, we obtained 8913111 raw reads from the library which was constructed from a mixture of four samples (HX3-CK, HX3-Cd-treatment, ZH24-CK and ZH24-Cd-treatment). After removing the reads without the CAGAG adaptor, 5430126 unique raw-reads were obtained. The unique sequences were aligned to the G. max genome database, and 6516276 reads were mapped to the genome. The mapped reads from the libraries represented 51481 annotated G. max genes.