Project description:Proteins from Mortierella elongata/Candidatus Glomeribacter sp. symbiotic system were extracted, trypsine digested and identified with LC-MS/MS analysis.
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed.
Project description:Targeting p53 by the small molecule PRIMA-1Met/APR-246 has shown promising preclinical activity in various cancer types. However, the mechanism of PRIMA-1Met-induced apoptosis is not completely understood and its effect on multiple myeloma (MM) cells is unknown. In this study we evaluated anti-tumor effect of PRIMA-1Met alone or combined with current anti-myeloma agents in MM cell lines, patient samples, and a mouse xenograft model. Results of our study showed that PRIMA-1Met decreased the viability of MM cells irrespective of p53 status with limited cytotoxicity toward normal hematopoietic cells. PRIMA-1Met restored wild type conformation of mutant p53 and induced activation of p73 up-regulating Noxa and down-regulating Mcl-1 without significant modulation of p53 level. Importantly, PRIMA-1Met delayed tumor growth and prolonged survival of mice bearing MM tumor. To identify the potential targets of PRIMA-1Met, we performed gene expression profiling (GEP) by microarray in three different cell lines harboring wild type, mutant or null p53 and analysed differential expression of target genes between PRIMA-1Met treated and non-treated samples. Based on our we conclude that treatment of MM cells with PRIMA-1Met lead to induction of p73-mediated apoptosis by up-regulating Noxa and down-regulating Mcl-1 irrespective of p53 status.
Project description:The dataset provides the whole proteome of the anammox bacterium "Candidatus Kuenenia Stuttgartiensis" strain CSTR1 growing planctonically in semi-CSTR reactor. The bacteria were growing at high growth rate (0.33 d-1) (reactor HRT 3d).
Project description:Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a persistent nitramine explosive with long-lasting properties. Rhodococcus sp. strain DN22 has been discovered as one of the microorganisms capable of RDX degradation. Despite respectable studies on Rhodococcus sp. strain DN22, the proteins participating in RDX degradation (Oxidoreductase and Cytochrome P450) in the strain remain to be fragments. In this study, complete genome of Rhodococcus sp. strain DN22 was sequenced and analyzed, and the entire sequences of the two genes encoding Oxidoreductase and Cytochrome P450 in Rhodococcus sp. strain DN22 were predicted, which were validated through proteomic data. Besides, despite the identification of certain chemical substances as proposed characterized degradation intermediates of RDX, few studies have investigated the physiological changes and metabolic pathways occurring within Rhodococcus sp. cells when treated with RDX, particularly through the use of mass spectrometry-based omics. Hence, proteomics and metabolomics of Rhodococcus sp. strain DN22 were performed and analyzed with the presence or absence of RDX in the medium. A total of 3186 protein groups were identified and quantified between the two groups, with 117 proteins being significantly differentially expressed proteins. A total of 1056 metabolites were identified after merging positive and negative ion modes, among which 131 metabolites were significantly differential. Through the combined analysis of differential proteomics and metabolomics, several KEGG pathways, including two-component system, ABC transporters, alanine, aspartate and glutamate metabolism, arginine biosynthesis, purine metabolism, nitrogen metabolism, and phosphotransferase system (PTS) were found to be significantly enriched. We expect that our investigation will expand the acquaintance of Rhodococcus sp. strain DN22, and the knowledge of microbial degradation.