Project description:Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus-host interactions in mixed infections. In comparison to single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves, and the plant death. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection, and to correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly-infected leaves were compared with those from singly-infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (down-regulated), protein synthesis and degradation (up-regulated), carbohydrate metabolism (up-regulated), and response to biotic stimulus and stress (up-regulated). The expression of reactive oxygen species-generating enzymes as well as several mitogen-activated protein kinases, were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation, and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely up-regulated by the synergistic infection. Virus-induced gene silencing of alfa-dioxygenase1 delayed cell death during PVX-PVY infection. Using mock inoculated leaf tissue as a reference, we compare the gene expression profiles of Nicotiana benthamiana plants infected with one of two viruses, Potato virus X (PVX) or Potato virus Y (PVY), or the combination PVX plus PVY. 3 biological replicates per treatment were independently grown and haversted.
Project description:In order to identify cellular proteins interacting with the coat protein (CP) of Potato virus Y (PVY), we used coimmunoprecipitation of GFP-CP in PVY-infected Nicotiana benthamiana plants. To be able to pull down non-abundant interactors and to stabilize transient interactions, we used the crosslinker dithiobis(succinimidyl propionate) (DSP). With this we were able to identify a total of 147 potential CP interactors.
Project description:Transcriptome sequencing from Nicotiana benthamiana leaves non-infected and infected with Turnip mosaic virus at 6 days post inoculation.
2021-02-25 | GSE167415 | GEO
Project description:PVY-infected Nicotiana benthamiana for small RNA sequencing to detect differential miRNAs.
Project description:Nicotiana benthamiana plants were infected with Asparagus Virus 2 and its mutant version. Upper non-inoculated leaves were collected at various time points and used for sample preparation. RNA-seq was performed on the WT infected, mutant infected and mock uninfected samples. Ribo-seq was performed on the WT infected and mutant infected samples.
Project description:Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus-host interactions in mixed infections. In comparison to single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves, and the plant death. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection, and to correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly-infected leaves were compared with those from singly-infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (down-regulated), protein synthesis and degradation (up-regulated), carbohydrate metabolism (up-regulated), and response to biotic stimulus and stress (up-regulated). The expression of reactive oxygen species-generating enzymes as well as several mitogen-activated protein kinases, were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation, and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely up-regulated by the synergistic infection. Virus-induced gene silencing of alfa-dioxygenase1 delayed cell death during PVX-PVY infection.
Project description:Verticillium dahliae is a soil-borne fungus with a broad host range, including the model plants Nicotiana benthamiana and Arabidopsis thaliana. The plant immunity can be activated by Vd-derived patterns while V. dahliae secreted effectors. We report here the RNAseq analyses of samples from N. benthamiana infected by V. dahliae strains 592 and 171 at different time points. The data showed dynamic expression patterns of genes not only from plant defense signaling but also plant developmental signaling.
Project description:This study aims to identify and functionally characterize miRNAs and their target genes in juvenile Nicotiana benthamiana plants using miRNA sequencing (miRNA-seq) and degradome sequencing. miRNA-seq will be employed to profile the miRNA repertoire, while degradome sequencing will be used to identify miRNA-mediated mRNA cleavage sites and validate target genes. The combined approach will elucidate the regulatory roles of miRNAs in the early developmental stages of Nicotiana benthamiana and provide insights into their functional characteristics
Project description:Six different Solanaceae species, Potato (Solanum tuberosum), Tomato (Lycopersicum esculentum), Pepper (Capsicum annuum), Tobacco (Nicotiana tabacum), Petunia and Nicotiana benthamiana were grown at 25C, 16h light and 8h darkness. Mature leaves were harvested after 4-6 weeks. RNA was isolated using Qiagen RNeasy. Tomato, pepper, petunia tobacco and N. benthamiana samples were hybridized against potato samples. Keywords: Direct comaprison
Project description:Micrarray analysis was used to identify gene expression changes associated with disease development and virus movement in N.benthamina plants induced by infection with the SACMV 1-Plex , 385K array Nicotiana benthamiana (NimbleGen design name: 110121_N_benthamiana_60mer_exp) was used in this study to monitor changes in gene expression levels in SACMV- infected leaf tissue. Three biological replicates were used for infected leaf tissue and one pooled mock-inoculated sample was used as a control/reference.